A label propagation community discovery algorithm combining seed node influence and neighborhood similarity

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-01-10 DOI:10.1007/s10115-023-02035-w
Miaomiao Liu, Jinyun Yang, Jingfeng Guo, Jing Chen
{"title":"A label propagation community discovery algorithm combining seed node influence and neighborhood similarity","authors":"Miaomiao Liu, Jinyun Yang, Jingfeng Guo, Jing Chen","doi":"10.1007/s10115-023-02035-w","DOIUrl":null,"url":null,"abstract":"<p>To address the problem of poor stability and low accuracy of community division caused by the randomness in the traditional label propagation algorithm (LPA), a community discovery algorithm that combines seed node influence and neighborhood similarity is proposed. Firstly, the K-shell values of neighbor nodes are combined with clustering coefficients to define node influence, the initial seed set is filtered by a threshold, and the less influential one in adjacent node pairs is removed to obtain the final seed set. Secondly, the connection strengths between non-seed nodes and seed nodes are defined based on their own weights, distance weights, and common neighbor weights. The labels of non-seed nodes are updated to the labels of seed nodes with which they have the maximum connection strength. Further, for the case that the connection strengths between a non-seed node and multiple seed nodes are the same, a new neighborhood similarity combining the information between the two types of nodes and their neighbors is proposed, thus avoiding the instability caused by randomly selecting the labels of seed nodes. Experiments are conducted on six classic real networks and eight artificial datasets with different complexities. The comparison and analysis with dozens of related algorithms are also done, which shows the proposed algorithm effectively improves the execution efficiency, and the community division results are stable and more accurate, with a maximum improvement in the modularity of about 87.64% and 47.04% over the LPA on real and artificial datasets, respectively.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"12 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-023-02035-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the problem of poor stability and low accuracy of community division caused by the randomness in the traditional label propagation algorithm (LPA), a community discovery algorithm that combines seed node influence and neighborhood similarity is proposed. Firstly, the K-shell values of neighbor nodes are combined with clustering coefficients to define node influence, the initial seed set is filtered by a threshold, and the less influential one in adjacent node pairs is removed to obtain the final seed set. Secondly, the connection strengths between non-seed nodes and seed nodes are defined based on their own weights, distance weights, and common neighbor weights. The labels of non-seed nodes are updated to the labels of seed nodes with which they have the maximum connection strength. Further, for the case that the connection strengths between a non-seed node and multiple seed nodes are the same, a new neighborhood similarity combining the information between the two types of nodes and their neighbors is proposed, thus avoiding the instability caused by randomly selecting the labels of seed nodes. Experiments are conducted on six classic real networks and eight artificial datasets with different complexities. The comparison and analysis with dozens of related algorithms are also done, which shows the proposed algorithm effectively improves the execution efficiency, and the community division results are stable and more accurate, with a maximum improvement in the modularity of about 87.64% and 47.04% over the LPA on real and artificial datasets, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合种子节点影响力和邻域相似性的标签传播社区发现算法
针对传统标签传播算法(LPA)中随机性导致的社区划分稳定性差、准确性低的问题,提出了一种结合种子节点影响力和邻域相似性的社区发现算法。首先,将相邻节点的 K 壳值与聚类系数相结合来定义节点影响力,通过阈值过滤初始种子集,并剔除相邻节点对中影响力较小的节点,得到最终种子集。其次,根据非种子节点自身权重、距离权重和共同邻居权重定义非种子节点与种子节点之间的连接强度。非种子节点的标签会更新为与之具有最大连接强度的种子节点的标签。此外,对于非种子节点和多个种子节点之间的连接强度相同的情况,提出了一种新的邻域相似性,结合了两类节点及其邻居之间的信息,从而避免了随机选择种子节点标签所造成的不稳定性。实验在六个经典真实网络和八个不同复杂度的人工数据集上进行。实验结果表明,提出的算法有效地提高了执行效率,社区划分结果稳定且更准确,在真实数据集和人工数据集上的模块化程度比 LPA 分别提高了约 87.64% 和 47.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1