An Ensemble Model for Acute Myeloid Leukemia Risk Stratification Recommendations by Combining Machine Learning with Clinical Guidelines

Ming-Siang Chang, Cheng-Hong Tsai, Wen-Chien Chou, Hwei-Fang Tien, Hsin-An Hou, Chien-Yu Chen
{"title":"An Ensemble Model for Acute Myeloid Leukemia Risk Stratification Recommendations by Combining Machine Learning with Clinical Guidelines","authors":"Ming-Siang Chang, Cheng-Hong Tsai, Wen-Chien Chou, Hwei-Fang Tien, Hsin-An Hou, Chien-Yu Chen","doi":"10.1101/2024.01.08.24301018","DOIUrl":null,"url":null,"abstract":"Acute Myeloid Leukemia (AML) is a complex disease requiring accurate risk stratification for effective treatment planning. This study introduces an innovative ensemble machine learning model integrated with the European LeukemiaNet (ELN) 2022 recommendations to enhance AML risk stratification. The model demonstrated superior performance by utilizing a comprehensive dataset of 1,213 patients from National Taiwan University Hospital (NTUH) and an external cohort of 2,113 patients from UK-NCRI trials. On the external cohort, it improved a concordance index (c-index) from 0.61 to 0.64 and effectively distinguished three different risk levels with median hazard ratios ranging from 18% to 50% improved. Key insights were gained from the discovered significant features influencing risk prediction, including age, genetic mutations, and hematological parameters. Notably, the model identified specific cytogenetic and molecular alterations like <em>TP53</em>, <em>IDH2</em>, <em>SRSF2</em>, <em>STAG2</em>, <em>KIT</em>, <em>TET2</em>, and karyotype (-5, -7, -15, inv(16)), alongside age and platelet counts. Additionally, the study explored variations in the effectiveness of hematopoietic stem cell transplantation (HSCT) across different risk levels, offering new perspectives on treatment effects. In summary, this study develops an ensemble model based on the NTUH cohort to deliver improved performance in AML risk stratification, showcasing the potential of integrating machine learning techniques with medical guidelines to enhance patient care and personalized medicine.","PeriodicalId":501203,"journal":{"name":"medRxiv - Hematology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.01.08.24301018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute Myeloid Leukemia (AML) is a complex disease requiring accurate risk stratification for effective treatment planning. This study introduces an innovative ensemble machine learning model integrated with the European LeukemiaNet (ELN) 2022 recommendations to enhance AML risk stratification. The model demonstrated superior performance by utilizing a comprehensive dataset of 1,213 patients from National Taiwan University Hospital (NTUH) and an external cohort of 2,113 patients from UK-NCRI trials. On the external cohort, it improved a concordance index (c-index) from 0.61 to 0.64 and effectively distinguished three different risk levels with median hazard ratios ranging from 18% to 50% improved. Key insights were gained from the discovered significant features influencing risk prediction, including age, genetic mutations, and hematological parameters. Notably, the model identified specific cytogenetic and molecular alterations like TP53, IDH2, SRSF2, STAG2, KIT, TET2, and karyotype (-5, -7, -15, inv(16)), alongside age and platelet counts. Additionally, the study explored variations in the effectiveness of hematopoietic stem cell transplantation (HSCT) across different risk levels, offering new perspectives on treatment effects. In summary, this study develops an ensemble model based on the NTUH cohort to deliver improved performance in AML risk stratification, showcasing the potential of integrating machine learning techniques with medical guidelines to enhance patient care and personalized medicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将机器学习与临床指南相结合,建立急性髓性白血病风险分层建议的集合模型
急性髓性白血病(AML)是一种复杂的疾病,需要准确的风险分层来制定有效的治疗计划。本研究介绍了一种创新的集合机器学习模型,该模型与欧洲白血病网络(ELN)2022年建议相结合,可加强急性髓细胞白血病的风险分层。该模型利用台湾大学医院(NTUH)1,213 名患者的综合数据集和英国国家癌症研究所(UK-NCRI)2,113 名患者的外部队列,显示出卓越的性能。在外部队列中,该模型的一致性指数(c-index)从 0.61 提高到 0.64,并有效区分了三种不同的风险等级,中位危险比提高了 18% 到 50% 不等。从发现的影响风险预测的重要特征(包括年龄、基因突变和血液学参数)中获得了重要启示。值得注意的是,除年龄和血小板计数外,该模型还确定了特定的细胞遗传学和分子改变,如TP53、IDH2、SRSF2、STAG2、KIT、TET2和核型(-5、-7、-15、inv(16))。此外,该研究还探讨了不同风险水平的造血干细胞移植(HSCT)效果差异,为治疗效果提供了新的视角。总之,这项研究基于NTUH队列开发了一个集合模型,提高了急性髓细胞性白血病风险分层的性能,展示了将机器学习技术与医疗指南相结合,加强患者护理和个性化医疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Insights into HLA Noncoding Sequence Mismatches and Their Impact on DPB1 Matching in Hematopoietic Cell Transplantation Comparison of haemoglobin concentration measurements using HemoCue-301 and Sysmex XN-Series 1500: a survey among anaemic Gambian infants aged 6-12 months Detection of Common Deletion Mutations (− α3.7 and − α4.2 kb) in HBA gene and Genotype-Phenotype Correlation Multi-omic and functional screening reveal targetable vulnerabilities in TP53 mutated multiple myeloma Evaluating the Therapeutic Effects of Amino Acid Treatment on Vaso-Occlusive Pain in Sickle Cell Disease: A Systematic Review and Meta-Analysis Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1