Machine Learning Insights into HLA Noncoding Sequence Mismatches and Their Impact on DPB1 Matching in Hematopoietic Cell Transplantation

Medhat Askar, Timothy L. Mosbruger, Grace Tzun-Wen Shaw, Haedong Kim, Yuncheng Duan, Andrew S. Allen, Jamie L. Duke, Timothy S. Olson, Dimitri S. Monos, Tristan J. Hayeck
{"title":"Machine Learning Insights into HLA Noncoding Sequence Mismatches and Their Impact on DPB1 Matching in Hematopoietic Cell Transplantation","authors":"Medhat Askar, Timothy L. Mosbruger, Grace Tzun-Wen Shaw, Haedong Kim, Yuncheng Duan, Andrew S. Allen, Jamie L. Duke, Timothy S. Olson, Dimitri S. Monos, Tristan J. Hayeck","doi":"10.1101/2024.09.13.24313580","DOIUrl":null,"url":null,"abstract":"Purpose: HCT is vital for treating hematological malignancies, relying on HLA matching between unrelated patient-donor pairs to significantly reduce adverse outcomes. Recent studies recognize the potential impact of HLA-DPB1 mismatches on HCT outcomes. Multiple approaches focus on finding better-tolerated HLA-DPB1 mismatches. Additionally, recent studies suggest matching at noncoding HLA sequence may improve HCT outcomes. This study aims to evaluate different approaches for categorizing DPB1 mismatches in patient-donor pairs and explore the potential impact of noncoding mismatches (available in class I HLA genes) on clinical outcomes. Methods: A retrospective study of 5,106 HCT pairs using Cox proportional hazards models, weighted by a machine learning algorithm, evaluates the impact of particular combinations of HLA-DPB1 mismatches in the context of noncoding HLA class I mismatches on outcomes of HCT. HLA-DPB1 mismatch criteria included T-cell epitope permissive/non-permissive mismatches, expression markers, and evolutionary clade mismatches. Results: Two HLA-DPB1 mismatches, using multiple criteria, lead to significant hazards of acute graft versus host disease grades 2-4, in the T cell replete group. When HLA-DPB1 mismatches occurred across evolutionary clades (DP2 allele/low-expression patient vs DP5 allele/high-expression in the donor), the deplete group showed significant hazards for treatment-related mortality (TRM) (HR=1.94, p-value=8.9x10-7) and overall survival (OS) (HR=1.67, p-value=1.3 x10-5) for additive effects of noncoding mismatches with two HLA-DPB1 mismatches. Conclusion: Two HLA-DPB1 mismatches remain to predict worse outcomes. However, noncoding mismatches in HLA class I genes confer elevated hazards of TRM and OS in conjunction with mismatches across evolutionary branches of HLA-DPB1. Therefore, noncoding mismatches may inform donor selection in the presence of HLA-DPB1 mismatches and improve HCT outcomes, emphasizing the utility of comprehensive sequencing of HLA alleles in HCT settings.","PeriodicalId":501203,"journal":{"name":"medRxiv - Hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.24313580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: HCT is vital for treating hematological malignancies, relying on HLA matching between unrelated patient-donor pairs to significantly reduce adverse outcomes. Recent studies recognize the potential impact of HLA-DPB1 mismatches on HCT outcomes. Multiple approaches focus on finding better-tolerated HLA-DPB1 mismatches. Additionally, recent studies suggest matching at noncoding HLA sequence may improve HCT outcomes. This study aims to evaluate different approaches for categorizing DPB1 mismatches in patient-donor pairs and explore the potential impact of noncoding mismatches (available in class I HLA genes) on clinical outcomes. Methods: A retrospective study of 5,106 HCT pairs using Cox proportional hazards models, weighted by a machine learning algorithm, evaluates the impact of particular combinations of HLA-DPB1 mismatches in the context of noncoding HLA class I mismatches on outcomes of HCT. HLA-DPB1 mismatch criteria included T-cell epitope permissive/non-permissive mismatches, expression markers, and evolutionary clade mismatches. Results: Two HLA-DPB1 mismatches, using multiple criteria, lead to significant hazards of acute graft versus host disease grades 2-4, in the T cell replete group. When HLA-DPB1 mismatches occurred across evolutionary clades (DP2 allele/low-expression patient vs DP5 allele/high-expression in the donor), the deplete group showed significant hazards for treatment-related mortality (TRM) (HR=1.94, p-value=8.9x10-7) and overall survival (OS) (HR=1.67, p-value=1.3 x10-5) for additive effects of noncoding mismatches with two HLA-DPB1 mismatches. Conclusion: Two HLA-DPB1 mismatches remain to predict worse outcomes. However, noncoding mismatches in HLA class I genes confer elevated hazards of TRM and OS in conjunction with mismatches across evolutionary branches of HLA-DPB1. Therefore, noncoding mismatches may inform donor selection in the presence of HLA-DPB1 mismatches and improve HCT outcomes, emphasizing the utility of comprehensive sequencing of HLA alleles in HCT settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 HLA 非编码序列错配及其对造血细胞移植中 DPB1 配型影响的机器学习见解
目的:造血干细胞移植对治疗血液恶性肿瘤至关重要,它依赖于非亲缘患者-供体配对之间的 HLA 匹配,以显著减少不良后果。最近的研究认识到 HLA-DPB1 不匹配对 HCT 结果的潜在影响。多种方法都侧重于寻找耐受性更好的 HLA-DPB1 错配。此外,最近的研究表明,非编码 HLA 序列匹配可改善 HCT 结果。本研究旨在评估对患者-供体配对中的 DPB1 错配进行分类的不同方法,并探讨非编码错配(可在 I 类 HLA 基因中找到)对临床结果的潜在影响。研究方法对 5106 对 HCT 进行回顾性研究,采用机器学习算法加权的 Cox 比例危险模型,评估在非编码 HLA I 类错配的情况下,HLA-DPB1 错配的特定组合对 HCT 结局的影响。HLA-DPB1错配标准包括T细胞表位允许/非允许错配、表达标记和进化支系错配。结果:在T细胞完全组中,采用多种标准的两个HLA-DPB1错配会导致2-4级急性移植物抗宿主疾病的显著危害。当HLA-DPB1错配发生在不同进化支系(DP2等位基因/低表达的患者与DP5等位基因/高表达的供体)时,贫乏组的治疗相关死亡率(TRM)(HR=1.94,p-value=8.9x10-7)和总生存率(OS)(HR=1.67,p-value=1.3x10-5)在两个HLA-DPB1错配的非编码错配的叠加效应下显示出显著的危险性。结论两个 HLA-DPB1 基因错配仍可预测较差的预后。然而,HLA I类基因中的非编码错配与HLA-DPB1进化分支中的错配一起会增加TRM和OS的危险性。因此,非编码错配可为存在 HLA-DPB1 错配的供体选择提供参考,并改善 HCT 的预后,这强调了在 HCT 环境中对 HLA 等位基因进行全面测序的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Insights into HLA Noncoding Sequence Mismatches and Their Impact on DPB1 Matching in Hematopoietic Cell Transplantation Comparison of haemoglobin concentration measurements using HemoCue-301 and Sysmex XN-Series 1500: a survey among anaemic Gambian infants aged 6-12 months Detection of Common Deletion Mutations (− α3.7 and − α4.2 kb) in HBA gene and Genotype-Phenotype Correlation Multi-omic and functional screening reveal targetable vulnerabilities in TP53 mutated multiple myeloma Evaluating the Therapeutic Effects of Amino Acid Treatment on Vaso-Occlusive Pain in Sickle Cell Disease: A Systematic Review and Meta-Analysis Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1