Hybrid Fuzzy Neural Network for Joint Task Offloading in the Internet of Vehicles

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-09 DOI:10.1007/s10723-023-09724-4
Bingtao Liu
{"title":"Hybrid Fuzzy Neural Network for Joint Task Offloading in the Internet of Vehicles","authors":"Bingtao Liu","doi":"10.1007/s10723-023-09724-4","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Vehicles (IoV) technology is progressively maturing because of the growth of private cars and the establishment of intelligent transportation systems. The development of smart cars has, therefore, been followed by a parallel rise in the volume of media and video games in the automobile and a massive increase in the need for processing resources. Smart cars cannot process the enormous quantity of requests created by vehicles because they have limited computing power and must maintain many outstanding jobs in their queues. The distribution of edge servers near the customer side of the highway may also accomplish real-time resource requests, and edge servers can assist with the shortage of computational power. Nevertheless, the substantial amount of energy created while processing is also an issue we must address. A joint task offloading strategy based on mobile edge computing and fog computing (EFTO) was presented in this paper to address this problem. Practically, the position of the processing activity is first discovered by obtaining the computing task's route, which reveals all the task's routing details from the starting point to the desired place. Next, to minimize the time and time expended during offloading and processing, a multi-objective optimization problem is implemented using the task offloading technique F-TORA based on the Takagi–Sugeno fuzzy neural network (T-S FNN). Finally, comparative trials showing a decrease in time consumed and an optimization of energy use compared to alternative offloading techniques prove the effectiveness of EFTO.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09724-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Vehicles (IoV) technology is progressively maturing because of the growth of private cars and the establishment of intelligent transportation systems. The development of smart cars has, therefore, been followed by a parallel rise in the volume of media and video games in the automobile and a massive increase in the need for processing resources. Smart cars cannot process the enormous quantity of requests created by vehicles because they have limited computing power and must maintain many outstanding jobs in their queues. The distribution of edge servers near the customer side of the highway may also accomplish real-time resource requests, and edge servers can assist with the shortage of computational power. Nevertheless, the substantial amount of energy created while processing is also an issue we must address. A joint task offloading strategy based on mobile edge computing and fog computing (EFTO) was presented in this paper to address this problem. Practically, the position of the processing activity is first discovered by obtaining the computing task's route, which reveals all the task's routing details from the starting point to the desired place. Next, to minimize the time and time expended during offloading and processing, a multi-objective optimization problem is implemented using the task offloading technique F-TORA based on the Takagi–Sugeno fuzzy neural network (T-S FNN). Finally, comparative trials showing a decrease in time consumed and an optimization of energy use compared to alternative offloading techniques prove the effectiveness of EFTO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于车联网联合任务卸载的混合模糊神经网络
随着私家车的发展和智能交通系统的建立,车联网(IoV)技术正逐步走向成熟。因此,在智能汽车发展的同时,汽车中的媒体和视频游戏数量也在增加,对处理资源的需求也大量增加。智能汽车无法处理汽车产生的大量请求,因为它们的计算能力有限,而且必须在队列中保留许多未完成的任务。分布在高速公路用户侧附近的边缘服务器也可以完成实时资源请求,边缘服务器可以帮助解决计算能力不足的问题。然而,处理过程中产生的大量能源也是我们必须解决的问题。本文提出了一种基于移动边缘计算和雾计算的联合任务卸载策略(EFTO)来解决这一问题。实际上,处理活动的位置首先是通过获取计算任务的路由来发现的,路由显示了任务从起点到所需地点的所有路由细节。接下来,为了最大限度地减少卸载和处理过程中所花费的时间,我们使用基于高木-菅野模糊神经网络(T-S FNN)的任务卸载技术 F-TORA 实现了一个多目标优化问题。最后,对比试验表明,与其他卸载技术相比,耗时减少,能耗优化,这证明了 EFTO 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1