Strain-rich high-entropy perovskite oxide of (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3 for durable and effective catalysis of oxygen redox reactions in lithium-oxygen battery

Zhanpeng Liu, Haoyang Xu, Xinxiang Wang, Guilei Tian, Dayue Du, Chaozhu Shu
{"title":"Strain-rich high-entropy perovskite oxide of (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3 for durable and effective catalysis of oxygen redox reactions in lithium-oxygen battery","authors":"Zhanpeng Liu,&nbsp;Haoyang Xu,&nbsp;Xinxiang Wang,&nbsp;Guilei Tian,&nbsp;Dayue Du,&nbsp;Chaozhu Shu","doi":"10.1002/bte2.20230053","DOIUrl":null,"url":null,"abstract":"<p>Despite their great promise as high-energy-density alternatives to Li-ion batteries, the extensive use of lithium-oxygen (Li-O<sub>2</sub>) batteries is constrained by the slow kinetics of both the oxygen evolution reaction and oxygen reduction reaction. To increase the overall performance of Li-O<sub>2</sub> batteries, it is essential to increase the efficiency of oxygen electrode reactions by constructing effective electrocatalysts. As a high-efficiency catalyst for Li-O<sub>2</sub> batteries, high entropy perovskite oxide (La<sub>0.8</sub>Sr<sub>0.2</sub>)(Mn<sub>0.2</sub>Fe<sub>0.2</sub>Cr<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>)O<sub>3</sub> (referred to as LS(MFCCN)O<sub>3</sub>) is designed and investigated in this article. The introduction of dissimilar metals in LS(MFCCN)O<sub>3</sub> has the potential to cause lattice deformation, thereby enhancing electron transfer between transition metal ions and facilitating the formation of numerous oxygen vacancies. This feature is advantageous for the reversible production and breakdown of discharge product Li<sub>2</sub>O<sub>2</sub>. Consequently, the Li-O<sub>2</sub> battery utilizing LS(MFCCN)O<sub>3</sub> as a catalyst achieves an impressive discharge capacity of 17,078.2 mAh g<sup>−1</sup> and exhibits an extended cycling life of 435 cycles. This study offers a useful method for adjusting the catalytic performance of perovskite oxides toward oxygen redox reactions in Li-O<sub>2</sub> batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their great promise as high-energy-density alternatives to Li-ion batteries, the extensive use of lithium-oxygen (Li-O2) batteries is constrained by the slow kinetics of both the oxygen evolution reaction and oxygen reduction reaction. To increase the overall performance of Li-O2 batteries, it is essential to increase the efficiency of oxygen electrode reactions by constructing effective electrocatalysts. As a high-efficiency catalyst for Li-O2 batteries, high entropy perovskite oxide (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3 (referred to as LS(MFCCN)O3) is designed and investigated in this article. The introduction of dissimilar metals in LS(MFCCN)O3 has the potential to cause lattice deformation, thereby enhancing electron transfer between transition metal ions and facilitating the formation of numerous oxygen vacancies. This feature is advantageous for the reversible production and breakdown of discharge product Li2O2. Consequently, the Li-O2 battery utilizing LS(MFCCN)O3 as a catalyst achieves an impressive discharge capacity of 17,078.2 mAh g−1 and exhibits an extended cycling life of 435 cycles. This study offers a useful method for adjusting the catalytic performance of perovskite oxides toward oxygen redox reactions in Li-O2 batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富应变高熵包晶氧化物 (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3,用于在锂氧电池中持久有效地催化氧氧化还原反应
尽管锂-氧(Li-O2)电池作为锂离子电池的高能量密度替代品大有可为,但其广泛应用却受到氧进化反应和氧还原反应缓慢动力学的限制。为了提高锂-氧电池的整体性能,必须通过构建有效的电催化剂来提高氧电极反应的效率。作为锂-O2 电池的高效催化剂,本文设计并研究了高熵包晶氧化物 (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3(简称 LS(MFCCN)O3)。在 LS(MFCCN)O3 中引入异种金属有可能导致晶格变形,从而加强过渡金属离子之间的电子转移,促进大量氧空位的形成。这一特性有利于放电产物 Li2O2 的可逆生成和分解。因此,使用 LS(MFCCN)O3 作为催化剂的二氧化锰锂电池的放电容量达到了惊人的 17,078.2 mAh g-1,循环寿命也延长到了 435 次。这项研究为调整过氧化物氧化物对二氧化锰锂电池中氧氧化还原反应的催化性能提供了一种有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1