Saurabh Kr Tiwary, Maninderjeet Singh, Farzana Hasan Likhi, Siddharaj Dabade, Jack F. Douglas and Alamgir Karim*,
{"title":"Self-Cross-Linking of MXene-Intercalated Graphene Oxide Membranes with Antiswelling Properties for Dye and Salt Rejection","authors":"Saurabh Kr Tiwary, Maninderjeet Singh, Farzana Hasan Likhi, Siddharaj Dabade, Jack F. Douglas and Alamgir Karim*, ","doi":"10.1021/acsenvironau.3c00059","DOIUrl":null,"url":null,"abstract":"<p >Membrane-based water purification is poised to play an important role in tackling the potable water crisis for safe and clean water access for the general population. Several studies have focused on near two-dimensional membranes for this purpose, which is based on an ion rejection technique. However, membrane swelling in these materials has emerged as a significant challenge because it leads to the loss of function. Herein, we report a self-cross-linked MXene-intercalated graphene oxide (GO) membrane that retains ion and dye rejection properties because the physical cross-linking interaction between Ti–O–Ti and neighboring nanosheets effectively suppresses the swelling of the membrane. In addition to the associative Ti–O–Ti bonds, C–O–C, O═C–O, and C–OH bonds are also formed, which are important for inhibiting the swelling of the membrane. To ensure the longevity of these membranes in a service context, they were subjected to heat pressurization and subsequent thermal annealing. The membrane subjected to this novel processing history exhibits minimal swelling upon immersion in solutions and retains function, rejecting salt and dyes over a wide range of salt and dye concentrations. Furthermore, these membranes successfully rejected dye and salt over a period of 72 h without a degradation of function, suggesting that these membranes have the requisite durability for water filtration applications.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.3c00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane-based water purification is poised to play an important role in tackling the potable water crisis for safe and clean water access for the general population. Several studies have focused on near two-dimensional membranes for this purpose, which is based on an ion rejection technique. However, membrane swelling in these materials has emerged as a significant challenge because it leads to the loss of function. Herein, we report a self-cross-linked MXene-intercalated graphene oxide (GO) membrane that retains ion and dye rejection properties because the physical cross-linking interaction between Ti–O–Ti and neighboring nanosheets effectively suppresses the swelling of the membrane. In addition to the associative Ti–O–Ti bonds, C–O–C, O═C–O, and C–OH bonds are also formed, which are important for inhibiting the swelling of the membrane. To ensure the longevity of these membranes in a service context, they were subjected to heat pressurization and subsequent thermal annealing. The membrane subjected to this novel processing history exhibits minimal swelling upon immersion in solutions and retains function, rejecting salt and dyes over a wide range of salt and dye concentrations. Furthermore, these membranes successfully rejected dye and salt over a period of 72 h without a degradation of function, suggesting that these membranes have the requisite durability for water filtration applications.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management