The increased presence of toxic chemicals in aquatic matrices and their associated health effects raise the need for more effective treatment technologies. The application of Fe(VI), an advanced oxidation treatment agent with disinfecting and coagulating capabilities, is limited by Fe(VI) aqueous instability. Our previous study proposed an Fe(VI)-coated sand media to overcome this constraint and demonstrated that Fe(VI)-coated sand was an effective medium for the treatment of phenolic compounds. In this study, we assessed the potential of the media for treatment of acetaminophen (ACM), benzotriazole (BZT), sulfamethoxazole (SMX), copper (Cu), lead (Pb), and zinc (Zn)─common contaminants found in wastewater effluents─in ultrapure and synthetic wastewater effluent. Fe(VI)-coated sand reactivity was influenced by the solution pH and aqueous chemistry. For example, the removal of Pb improved by 39% in the presence of trace organics, indicating that trace metal removal was enhanced by Fe(III) phases formed during Fe(VI) reactions with trace organics. While oxidation of trace organic compounds increased as pH decreased, trace metal sorption was more favorable at higher pH (i.e., pH 8 and 9). The oxidation efficiency of trace organics by the media was the highest for ACM and SMX while BZT degradation was limited due to formation of Cu–BZT complexes. Batch tests in synthetic wastewater effluent revealed that the presence of divalent cations (i.e., Ca2+ and Mg2+) can catalyze Fe(VI) self-decay and promote Fe(III) production and subsequent trace metal removal; however, oxidation of trace organics was hindered in this matrix. This study highlights the potential for Fe(VI)-coated sand application for the treatment of complex matrices more representative of natural and engineered aquatic systems.
Point-of-use (POU) water disinfection technologies can be adopted to provide access to safe drinking water by treating water at the household level; however, navigating various POU disinfection technologies can be difficult. While numerous conventional POU devices exist, emerging technologies using novel materials or advanced processes have been under development and claim to be of lower cost with higher treatment capacity. However, it is unclear if these claims are substantiated and how novel technologies compare to conventional ones in terms of cost and environmental impacts when providing the same service (i.e., achieving a necessary level of disinfection for safe drinking water). This research assessed the sustainability of four different POU technologies (chlorination using sodium hypochlorite, a silver-nanoparticle-enabled ceramic water filter, ultraviolet mercury lamps, and ultraviolet light-emitting diodes). Leveraging open-source Python packages (QSDsan and EXPOsan), the cost and environmental impacts of these POU technologies were assessed using techno-economic analysis and life cycle assessment as per capita cost (USD·cap–1·yr–1) and global warming potential (kg CO2 eq·cap–1·yr–1). Impacts of water quality parameters (e.g., turbidity, hardness) were quantified for both surface water and groundwater, and uncertainty and sensitivity analyses were used to identify which assumptions influence outcomes. All technologies were further evaluated across ranges of adoption times, and contextual analysis was performed to evaluate the implications of technology deployment across the world. Results of this study can potentially provide valuable insights for decision-makers, nonprofit organizations, and future researchers in developing sustainable approaches for ensuring access to safe drinking water through POU technologies.
Column chromatography is a technique widely used for the purification of active pharmaceutical ingredients (APIs). One of the common solvent systems used by this technique is blends of dichloromethane (DCM) and methanol (MeOH), thereby exposing workers to health and safety risks and making the pharmaceutical sector one of the major contributors to chlorinated solvent waste. In this work, API separation and purification using several alternative safer solvent blends in column chromatography were evaluated and compared to DCM/MeOH. Ibuprofen and acetaminophen were used as model APIs, and caffeine was used as a model additive. Overall, some of the safer solvent blends tested provided better performance, with higher API recovery and purity compared to DCM/MeOH, in addition to potential health, safety, and environmental benefits. Specifically, blends of heptane/ethyl acetate and heptane/methyl acetate showed the most promise. Our work demonstrates the potential of these safer solvent blends as possible replacements for DCM/MeOH in API purification, thereby addressing a critical safety concern in the pharmaceutical industry.
While mercury occurs naturally in the environment, human activity has significantly disturbed its biogeochemical cycle. Inorganic mercury entering aquatic systems can be transformed into methylmercury, a strong neurotoxicant that builds up in organisms and affects ecosystem and public health. In the Arctic, top predators such as beluga whales, an ecologically and culturally significant species for many Inuit communities, can contain high concentrations of methylmercury. Historical mercury concentrations in beluga in the western Canadian Arctic’s Beaufort Sea cannot be explained by mercury emission trends alone; in addition, they could potentially be driven by climate change impacts, such as rising temperatures and sea ice melt. These changes can affect mercury bioaccumulation through different pathways, including ecological and mercury transport processes. In this study, we explore key drivers of mercury bioaccumulation in the Beaufort Sea beluga population using Ecopath with Ecosim, an ecosystem modeling approach, and scenarios of environmental change informed by Western Science and Inuvialuit Knowledge. Comparing the effect of historical sea ice cover, sea surface temperature, and freshwater discharge time series, modeling suggests that the timing of historical increases and decreases in beluga methylmercury concentrations can be better explained by the resulting changes to ecosystem productivity rather than by those to mercury inputs and that all three environmental drivers could partially explain the decrease in mercury concentrations in beluga after the mid-1990s. This work highlights the value of multiple knowledge systems and exploratory modeling methods in understanding environmental change and contaminant cycling. Future work building on this research could inform climate change adaptation efforts and inform management decisions in the region.