Direct Heterocycle C-H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation.

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC The Journal of Organic Chemistry Pub Date : 2024-11-15 Epub Date: 2024-01-11 DOI:10.1021/acs.joc.3c02311
Nahiane Pipaón Fernández, Odhran Cruise, Sarah E F Easton, Justin M Kaplan, John L Woodard, Damian P Hruszkewycz, David C Leitch
{"title":"Direct Heterocycle C-H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation.","authors":"Nahiane Pipaón Fernández, Odhran Cruise, Sarah E F Easton, Justin M Kaplan, John L Woodard, Damian P Hruszkewycz, David C Leitch","doi":"10.1021/acs.joc.3c02311","DOIUrl":null,"url":null,"abstract":"<p><p>One of the major challenges in developing catalytic methods for C-C bond formation is the identification of generally applicable reaction conditions, particularly if multiple substrate structural classes are involved. Pd-catalyzed direct arylation reactions are powerful transformations that enable direct functionalization of C-H bonds; however, the corresponding direct alkenylation reactions, using vinyl (pseudo) halide electrophiles, are less well developed. Inspired by process development efforts toward <b>GSK3368715</b>, an investigational active pharmaceutical ingredient, we report that a Pd(II) palladacycle derived from tri-<i>tert</i>-butylphosphine and Pd(OAc)<sub>2</sub> is an effective single-component precatalyst for a variety of direct alkenylation reactions. High-throughput experimentation identified optimal solvent/base combinations for a variety of HetAr-H substrate classes undergoing C-H activation without the need for cocatalysts or stoichiometric silver bases (e.g., Ag<sub>2</sub>CO<sub>3</sub>). We propose this reaction proceeds via a dual cooperative catalytic mechanism, where in situ-generated Pd(0) supports a canonical Pd(0)/(II) cross-coupling cycle and the palladacycle effects C-H activation via CMD in a redox-neutral cycle. In all, 192 substrate combinations were tested with a hit rate of approximately 40% and 24 isolated examples. Importantly, this method was applied to prepare a key intermediate in the synthesis of <b>GSK3368715</b> on multigram scale.</p>","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.3c02311","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenges in developing catalytic methods for C-C bond formation is the identification of generally applicable reaction conditions, particularly if multiple substrate structural classes are involved. Pd-catalyzed direct arylation reactions are powerful transformations that enable direct functionalization of C-H bonds; however, the corresponding direct alkenylation reactions, using vinyl (pseudo) halide electrophiles, are less well developed. Inspired by process development efforts toward GSK3368715, an investigational active pharmaceutical ingredient, we report that a Pd(II) palladacycle derived from tri-tert-butylphosphine and Pd(OAc)2 is an effective single-component precatalyst for a variety of direct alkenylation reactions. High-throughput experimentation identified optimal solvent/base combinations for a variety of HetAr-H substrate classes undergoing C-H activation without the need for cocatalysts or stoichiometric silver bases (e.g., Ag2CO3). We propose this reaction proceeds via a dual cooperative catalytic mechanism, where in situ-generated Pd(0) supports a canonical Pd(0)/(II) cross-coupling cycle and the palladacycle effects C-H activation via CMD in a redox-neutral cycle. In all, 192 substrate combinations were tested with a hit rate of approximately 40% and 24 isolated examples. Importantly, this method was applied to prepare a key intermediate in the synthesis of GSK3368715 on multigram scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用 Palladacycle 前催化剂的双重催化直接进行异环 C-H 烯化反应:通过高通量实验进行多因素优化和范围探索。
开发 C-C 键形成催化方法的主要挑战之一是确定普遍适用的反应条件,尤其是在涉及多种底物结构类别的情况下。钯催化的直接芳基化反应是实现 C-H 键直接官能化的强力转化反应;然而,使用乙烯基(假)卤化物亲电体的相应直接烯基化反应却不太成熟。受 GSK3368715(一种在研活性药物成分)工艺开发工作的启发,我们报告了由三叔丁基膦和 Pd(OAc)2 制成的 Pd(II) palladacycle 是多种直接烯化反应的有效单组分前催化剂。高通量实验确定了各种 HetAr-H 底物类别进行 C-H 活化的最佳溶剂/碱组合,而不需要助催化剂或化学银碱(如 Ag2CO3)。我们认为该反应是通过双重合作催化机制进行的,其中原位生成的钯(0)支持典型的钯(0)/(II)交叉偶联循环,而苍白循环则在氧化还原中性循环中通过 CMD 实现 C-H 活化。总共测试了 192 种底物组合,命中率约为 40%,分离出 24 个实例。重要的是,该方法被用于制备 GSK3368715 多克级合成的关键中间体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Organic Chemistry
The Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Nickel-Catalyzed Reductive Arylation of Redox Active Esters for the Synthesis of α-Aryl Nitriles: Investigation of a Chlorosilane Additive. Direct Heterocycle C-H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1