Druggable cavities and allosteric modulators of the cell division cycle 7 (CDC7) kinase.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2024-12-01 Epub Date: 2024-01-11 DOI:10.1080/14756366.2024.2301767
Elisa Rojas-Prats, Loreto Martinez-Gonzalez, Carmen Gil, David Ramírez, Ana Martinez
{"title":"Druggable cavities and allosteric modulators of the cell division cycle 7 (CDC7) kinase.","authors":"Elisa Rojas-Prats, Loreto Martinez-Gonzalez, Carmen Gil, David Ramírez, Ana Martinez","doi":"10.1080/14756366.2024.2301767","DOIUrl":null,"url":null,"abstract":"<p><p>Cell division cycle 7 kinase (CDC7) has been found overexpressed in many cancer cell lines being also one of the kinases involved in the nuclear protein TDP-43 phosphorylation <i>in vivo</i>. Thus, inhibitors of CDC7 are emerging drug candidates for the treatment of oncological and neurodegenerative unmet diseases. All the known CDC7 inhibitors are ATP-competitives, lacking of selectivity enough for success in clinical trials. As allosteric sites are less conserved among kinase proteins, discovery of allosteric modulators of CDC7 is a great challenge and opportunity in this field.Using different computational approaches, we have here identified new druggable cavities on the human CDC7 structure and subsequently selective CDC7 inhibitors with allosteric modulation mainly targeting the pockets where the interaction between this kinase and its activator DBF4 takes place.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2301767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell division cycle 7 kinase (CDC7) has been found overexpressed in many cancer cell lines being also one of the kinases involved in the nuclear protein TDP-43 phosphorylation in vivo. Thus, inhibitors of CDC7 are emerging drug candidates for the treatment of oncological and neurodegenerative unmet diseases. All the known CDC7 inhibitors are ATP-competitives, lacking of selectivity enough for success in clinical trials. As allosteric sites are less conserved among kinase proteins, discovery of allosteric modulators of CDC7 is a great challenge and opportunity in this field.Using different computational approaches, we have here identified new druggable cavities on the human CDC7 structure and subsequently selective CDC7 inhibitors with allosteric modulation mainly targeting the pockets where the interaction between this kinase and its activator DBF4 takes place.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞分裂周期 7 (CDC7) 激酶的药腔和异位调节剂。
细胞分裂周期 7 激酶(CDC7)被发现在许多癌细胞系中过度表达,也是参与体内核蛋白 TDP-43 磷酸化的激酶之一。因此,CDC7 抑制剂是治疗肿瘤和神经退行性疾病的新兴候选药物。所有已知的 CDC7 抑制剂都是 ATP 竞争性的,缺乏足够的选择性,因此无法在临床试验中取得成功。利用不同的计算方法,我们在人类 CDC7 结构上发现了新的可药用空腔,并随后发现了具有选择性的 CDC7 抑制剂,这些抑制剂主要针对该激酶与其激活剂 DBF4 之间发生相互作用的空腔进行异构调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
期刊最新文献
Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. Novel dual-targeting inhibitors of NSD2 and HDAC2 for the treatment of liver cancer: structure-based virtual screening, molecular dynamics simulation, and in vitro and in vivo biological activity evaluations. Searching for novel MDM2/MDMX dual inhibitors through a drug repurposing approach. Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1