TPGS-mediated Transethosomes Enhance Transdermal Administration of Curcumin via Effects on Deformability and Stability.

Teng Guo, Chenming Zhang, Yuling Chen, Yihan Wu, Zhenda Liu, Yongtai Zhang, Nianping Feng
{"title":"TPGS-mediated Transethosomes Enhance Transdermal Administration of Curcumin <i>via</i> Effects on Deformability and Stability.","authors":"Teng Guo, Chenming Zhang, Yuling Chen, Yihan Wu, Zhenda Liu, Yongtai Zhang, Nianping Feng","doi":"10.2174/0115672018279577231208055415","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).</p><p><strong>Methods: </strong>The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through <i>in vitro</i> transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.</p><p><strong>Results: </strong>Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). <i>In vitro</i> transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution was distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.</p><p><strong>Conclusion: </strong>TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"479-491"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018279577231208055415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).

Methods: The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through in vitro transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.

Results: Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). In vitro transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution was distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.

Conclusion: TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TPGS 介导的转吸附体通过对变形性和稳定性的影响增强姜黄素的透皮给药。
背景:添加适当的表面活性剂可以提高透硫体的透皮渗透性,同时还能利用其作为功能材料的特性。本研究以 D-α-生育酚酸聚乙二醇琥珀酸酯(TPGS)为边缘活化剂,制备了用于姜黄素(Cur)透皮递送的透硫体:方法:制备并优化了TPGS介导的姜黄素负载透硫体(Cur@TES),并对优化后的制剂进行了形态、粒度、包埋效率(EE)和载药量(DL)的表征。研究了 Cur@TES 的稳定性和变形性,并通过体外透皮试验和荧光成像研究了 Cur@TES 的透皮给药效果。为了确定 Cur@TES.Results 的抗炎效果,对小鼠耳朵肿胀模型进行了研究:Cur@TES呈圆形或椭圆形。优化配方的粒度、EE 和 DL 分别为 131.2 ± 7.2 nm、97.68 ± 2.26% 和 6.58 ± 0.62%。X 射线衍射分析证实,囊泡内核形成了无序结构。此外,与载姜黄素的乙硫体(Cur@ES)相比,Cur@TES 系统表现出更好的稳定性和可变形性。体外透皮实验表明,Cur@TES 能显著增加皮肤中的药物保留量(P<0.05)。荧光成像证实,TPGS 介导的透硫体在皮肤中的分布明显增强。此外,在小鼠耳肿胀模型中,Cur@TES 对炎性肿胀有明显的抑制作用:结论:TPGS 介导的反式硫体具有明显的透皮优势和更强的抗炎效果,为姜黄素的透皮给药提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formulation Development and In vitro Characterization of Nanoparticles of Pazopanib for Wet Macular Degeneration. Double Particle Surface Modification to Improve Key Properties of Pueraria Lobatae Radix Powder for Direct Compaction. Multiple-Chamber Nanostructures for Drug Delivery. Nano Biomaterials in Drug Delivery and Tissue Engineering. Recent Advances in Artificial Intelligence and Nanotechnology-Driven Strategies for Diagnosis and Therapy of Ocular Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1