Pub Date : 2025-01-24DOI: 10.2174/0115672018320938241121075859
Gaurav Mishra, Sunny Rathee, Munish Garg, Umesh K Patil
In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection. The review also explores the potential for personalized vaccines based on genetic profiles, along with the latest techniques to ensure vaccine stability and extend shelf life. Highlighting the versatility of mRNA vaccines in addressing emerging infectious diseases and their variations, the review underscores the significance of swift response plans and advanced technologies to counter evolving viral mutations. In summary, this in-depth analysis emphasizes how mRNA vaccines hold transformative potential in reshaping both therapeutic and preventive strategies. Notable achievements include the creation of extremely potent mRNA vaccinations against the SARS-CoV-2 virus, resulting in the COVID-19 pandemic. Ongoing efforts to address challenges like long-term immune protection and increase the effectiveness and stability of mRNA vaccines are also discussed. This review's main goal is to provide a thorough summary of current advancements in mRNA vaccine technology while exploring how these advances may impact future approaches to treating and preventing different diseases.
{"title":"mRNA Vaccines: Unlocking Potential, Exploring Applications, and Envisioning Future Horizons.","authors":"Gaurav Mishra, Sunny Rathee, Munish Garg, Umesh K Patil","doi":"10.2174/0115672018320938241121075859","DOIUrl":"https://doi.org/10.2174/0115672018320938241121075859","url":null,"abstract":"<p><p>In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection. The review also explores the potential for personalized vaccines based on genetic profiles, along with the latest techniques to ensure vaccine stability and extend shelf life. Highlighting the versatility of mRNA vaccines in addressing emerging infectious diseases and their variations, the review underscores the significance of swift response plans and advanced technologies to counter evolving viral mutations. In summary, this in-depth analysis emphasizes how mRNA vaccines hold transformative potential in reshaping both therapeutic and preventive strategies. Notable achievements include the creation of extremely potent mRNA vaccinations against the SARS-CoV-2 virus, resulting in the COVID-19 pandemic. Ongoing efforts to address challenges like long-term immune protection and increase the effectiveness and stability of mRNA vaccines are also discussed. This review's main goal is to provide a thorough summary of current advancements in mRNA vaccine technology while exploring how these advances may impact future approaches to treating and preventing different diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots. Furthermore, diverse nanomaterials have been explored in theranostics, including liposomes, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots and mesoporous silica nanoparticles. Furthermore, the integration of imaging techniques such as surface-enhanced Raman scattering (SERS) and positron emission tomography (PET) with therapeutic nanoparticles has been analyzed for potential clinical applications.
{"title":"Recent Advances in Nanotherapeutics and Theranostics for Squamous Cell Carcinoma: A Comprehensive Review.","authors":"Neeraj Sharma, Abhiram Kumar, Sharda Sambhakar, Daksh Bhatia, Sahil Hussain, Mohd Mursal, Bishambar Singh, Kumar Pranav Narayan","doi":"10.2174/0115672018342513241230061704","DOIUrl":"https://doi.org/10.2174/0115672018342513241230061704","url":null,"abstract":"<p><p>Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots. Furthermore, diverse nanomaterials have been explored in theranostics, including liposomes, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots and mesoporous silica nanoparticles. Furthermore, the integration of imaging techniques such as surface-enhanced Raman scattering (SERS) and positron emission tomography (PET) with therapeutic nanoparticles has been analyzed for potential clinical applications.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Alopecia is globally known as a distressing medical disorder that affects men and women, and current commercially available minoxidil solutions are formulated with irritant vehicles with frequent complaints of dermatologic adverse effects.
Objectives: This study aimed to investigate further the compatibility of ready-to-use vehicles for the preparation of tailored formulations for alopecia treatment, namely TrichoSol™ (a ready-to-use vehicle for personalized hair solutions) and TrichoFoam™ (a ready-to-use vehicle for personalized foam formulations), in combination with minoxidil and other active pharmaceutical ingredients (APIs), to establish adequate beyond-use dates (BUD) for the given formulations.
Methods: Products under evaluation were compounded using TrichoSol™ or TrichoFoam™, with direct incorporation of the APIs into these vehicles. Samples were then stored at controlled room temperature for up to 180 days. High-performance liquid chromatography (HPLC) methods were developed and validated, and then utilized to evaluate the compatibility of the APIs in TrichoSol™ and TrichoFoam™. Forced degradation studies were conducted to assess API stability under various stress conditions, and Antimicrobial Effectiveness Testing (AET) was performed at 0 and 180 days after compounding.
Results: According to our results, BUDs of up to 90-180 days were obtained for the examined formulations stored at room temperature, considering a degradation of maximum 10% of the nominal concentration of the APIs within them. The formulations exhibited no discernible physical alterations throughout this period and maintained chemical stability within acceptable limits. Microbiological evaluations confirmed the efficacy of the preservative system.
Conclusion: Products compounded with TrichoSol™ and TrichoFoam™ showed suitable stability to be used as personalized treatments for alopecia. We can then suggest that the vehicles TrichoSol™ and TrichoFoam™ present effective solutions for compounding personalized hair care treatments.
{"title":"Exploring the Physicochemical Compatibility of Minoxidil in Combination with Different Active Pharmaceutical Ingredients in Ready-to-use Vehicles for Alopecia Treatment.","authors":"Bruna Marianni, Savvas Koulouridas, Hudson Caetano Polonini","doi":"10.2174/0115672018327249241217163930","DOIUrl":"https://doi.org/10.2174/0115672018327249241217163930","url":null,"abstract":"<p><strong>Background: </strong>Alopecia is globally known as a distressing medical disorder that affects men and women, and current commercially available minoxidil solutions are formulated with irritant vehicles with frequent complaints of dermatologic adverse effects.</p><p><strong>Objectives: </strong>This study aimed to investigate further the compatibility of ready-to-use vehicles for the preparation of tailored formulations for alopecia treatment, namely TrichoSol™ (a ready-to-use vehicle for personalized hair solutions) and TrichoFoam™ (a ready-to-use vehicle for personalized foam formulations), in combination with minoxidil and other active pharmaceutical ingredients (APIs), to establish adequate beyond-use dates (BUD) for the given formulations.</p><p><strong>Methods: </strong>Products under evaluation were compounded using TrichoSol™ or TrichoFoam™, with direct incorporation of the APIs into these vehicles. Samples were then stored at controlled room temperature for up to 180 days. High-performance liquid chromatography (HPLC) methods were developed and validated, and then utilized to evaluate the compatibility of the APIs in TrichoSol™ and TrichoFoam™. Forced degradation studies were conducted to assess API stability under various stress conditions, and Antimicrobial Effectiveness Testing (AET) was performed at 0 and 180 days after compounding.</p><p><strong>Results: </strong>According to our results, BUDs of up to 90-180 days were obtained for the examined formulations stored at room temperature, considering a degradation of maximum 10% of the nominal concentration of the APIs within them. The formulations exhibited no discernible physical alterations throughout this period and maintained chemical stability within acceptable limits. Microbiological evaluations confirmed the efficacy of the preservative system.</p><p><strong>Conclusion: </strong>Products compounded with TrichoSol™ and TrichoFoam™ showed suitable stability to be used as personalized treatments for alopecia. We can then suggest that the vehicles TrichoSol™ and TrichoFoam™ present effective solutions for compounding personalized hair care treatments.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Overcoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.
Objectives: The study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.
Methods: Soluplus-stabilized amorphous FLDP (FLDP-SSAs) was prepared using a two-phase mixing method. The samples were analyzed for their microscopic and macroscopic behavior using polarized light microscopy (PLM), differential scanning calorimetry (DSC), molecular simulation, and in vitro dissolution studies. Subsequently, the pharmacokinetics of FLDP-SSAs were evaluated.
Results: The maximum drug-to-Soluplus mass ratio of FLDP-SSAs was 50:50, with a drug concentration of 8.0 mg/mL. They exhibited an amorphous nature, as confirmed by PLM and DSC. FLDPSSAs generated nanoparticles with a particle size of approximately 50 nm during in vitro dissolution. Compared to FLDP oral solution, FLDP-SSAs exhibited higher solubility due to their amorphous nature and the generation of nanoparticles. The area under the curve (AUC) for oral FLDP-SSAs was 16.7-fold larger than that of the FLDP suspension.
Conclusion: FLDP-SSAs could stabilize FLDP in an amorphous state and serve as drug carriers to enhance oral absorption.
{"title":"Soluplus Stabilized Amorphous Dispersions for Enhanced Oral Absorption of Felodipine.","authors":"Shujuan Zhang, Subing Xiong, Ying Gong, Liangliang Wang, Dayun Huang","doi":"10.2174/0115672018363757241216061705","DOIUrl":"https://doi.org/10.2174/0115672018363757241216061705","url":null,"abstract":"<p><strong>Background: </strong>Overcoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.</p><p><strong>Objectives: </strong>The study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.</p><p><strong>Methods: </strong>Soluplus-stabilized amorphous FLDP (FLDP-SSAs) was prepared using a two-phase mixing method. The samples were analyzed for their microscopic and macroscopic behavior using polarized light microscopy (PLM), differential scanning calorimetry (DSC), molecular simulation, and in vitro dissolution studies. Subsequently, the pharmacokinetics of FLDP-SSAs were evaluated.</p><p><strong>Results: </strong>The maximum drug-to-Soluplus mass ratio of FLDP-SSAs was 50:50, with a drug concentration of 8.0 mg/mL. They exhibited an amorphous nature, as confirmed by PLM and DSC. FLDPSSAs generated nanoparticles with a particle size of approximately 50 nm during in vitro dissolution. Compared to FLDP oral solution, FLDP-SSAs exhibited higher solubility due to their amorphous nature and the generation of nanoparticles. The area under the curve (AUC) for oral FLDP-SSAs was 16.7-fold larger than that of the FLDP suspension.</p><p><strong>Conclusion: </strong>FLDP-SSAs could stabilize FLDP in an amorphous state and serve as drug carriers to enhance oral absorption.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.2174/0115672018341670241124150932
Km Rafiya, Sakshi Awasthi, Saba Asif Qureshi, Nazeer Hasan, Farhan Jalees Ahmad
Cancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR). A novel platform, nanoscale delivery system, concluding desirable applications for the treatment of cancer with targeted and controlled release of drugs, reducing the number of side effects and systemic toxicity. Recent studies emphasize that combining 2 or more nanocarrier-mediated therapies may produce complementary therapeutic effects, perhaps resulting in improved outcomes of cancer current therapies like deterioration of drug resistance. Therefore, in this article, we scrutinize the recent advancement addressing combination therapy by combining nanoparticles with anticancer drugs. It briefly concludes a thorough overview of cancer, tumor or solid resistant tumors, the mechanism of resistant tumors, current therapies for the treatment of solid tumors, and their challenges. It also covers various types of nanoparticles used in cancer treatment, the usage of nanocarriers in resistant tumors, and nanocarrier-based combinatorial therapy for the treatment of resistant tumors as well as its benefits. However, this approach still needs to be improved for clinical applications.
{"title":"Recent Advances in Nanocarrier-mediated Combination Drug Therapy for Tackling Solid-resistant Tumors.","authors":"Km Rafiya, Sakshi Awasthi, Saba Asif Qureshi, Nazeer Hasan, Farhan Jalees Ahmad","doi":"10.2174/0115672018341670241124150932","DOIUrl":"https://doi.org/10.2174/0115672018341670241124150932","url":null,"abstract":"<p><p>Cancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR). A novel platform, nanoscale delivery system, concluding desirable applications for the treatment of cancer with targeted and controlled release of drugs, reducing the number of side effects and systemic toxicity. Recent studies emphasize that combining 2 or more nanocarrier-mediated therapies may produce complementary therapeutic effects, perhaps resulting in improved outcomes of cancer current therapies like deterioration of drug resistance. Therefore, in this article, we scrutinize the recent advancement addressing combination therapy by combining nanoparticles with anticancer drugs. It briefly concludes a thorough overview of cancer, tumor or solid resistant tumors, the mechanism of resistant tumors, current therapies for the treatment of solid tumors, and their challenges. It also covers various types of nanoparticles used in cancer treatment, the usage of nanocarriers in resistant tumors, and nanocarrier-based combinatorial therapy for the treatment of resistant tumors as well as its benefits. However, this approach still needs to be improved for clinical applications.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.2174/0115672018346286241121052105
Rubhan Chandran, Eusni Rahayu Mohd Tohit, Johnson Stanslas, Norazlinaliza Salim, Tuan Mazlelaa Tuan Mahmood
Introduction: Poly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.
Methods: A direct drug loading approach in the HMN matrix was introduced in this work following a pH modification step. The effect of pH modification on the physicochemical properties of HMN was studied. Then, bovine serum albumin (BSA), a model protein, was loaded into the pH-modified HMN, and the morphological changes in HMN and protein stability were also assessed. Finally, the efficacy of BSA-loaded HMN in the transdermal delivery was evaluated ex vivo.
Results: A significant increase in swelling was recorded following the pH modification of HMN (p < 0.001). The structure of pH-modified hydrogel was highly porous, and ATR-FTIR spectra indicated a shift in the carboxylic peak. The secondary structure of BSA loaded in the pH-modified HMN was also preserved. The BSA-loaded HMN mediated a sustained ex-vivo drug release with a cumulative release of 64.70% (3.88 mg) in 24 h.
Conclusion: Hence, the model drug-incorporated PMVE/MA HMN system shows potential for sustainable transdermal delivery of proteins.
{"title":"Drug-Loaded Hydrogel Microneedles for Sustainable Transdermal Delivery of Macromolecular Proteins.","authors":"Rubhan Chandran, Eusni Rahayu Mohd Tohit, Johnson Stanslas, Norazlinaliza Salim, Tuan Mazlelaa Tuan Mahmood","doi":"10.2174/0115672018346286241121052105","DOIUrl":"https://doi.org/10.2174/0115672018346286241121052105","url":null,"abstract":"<p><strong>Introduction: </strong>Poly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.</p><p><strong>Methods: </strong>A direct drug loading approach in the HMN matrix was introduced in this work following a pH modification step. The effect of pH modification on the physicochemical properties of HMN was studied. Then, bovine serum albumin (BSA), a model protein, was loaded into the pH-modified HMN, and the morphological changes in HMN and protein stability were also assessed. Finally, the efficacy of BSA-loaded HMN in the transdermal delivery was evaluated ex vivo.</p><p><strong>Results: </strong>A significant increase in swelling was recorded following the pH modification of HMN (p < 0.001). The structure of pH-modified hydrogel was highly porous, and ATR-FTIR spectra indicated a shift in the carboxylic peak. The secondary structure of BSA loaded in the pH-modified HMN was also preserved. The BSA-loaded HMN mediated a sustained ex-vivo drug release with a cumulative release of 64.70% (3.88 mg) in 24 h.</p><p><strong>Conclusion: </strong>Hence, the model drug-incorporated PMVE/MA HMN system shows potential for sustainable transdermal delivery of proteins.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.2174/0115672018339596241120191113
Jiayi Yang, Shuo Yin, Tan Wu, Yangyang Zhang, Chunyun Zhu, Nianping Feng, Teng Guo
Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.
Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through in vitro release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.
Results: With the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of in vitro release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.
Conclusion: The compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.
{"title":"Improvement in Compatibility and Drug Release Performance of Hot-Melt Pressure-Sensitive Adhesives by Physical Blending Technique.","authors":"Jiayi Yang, Shuo Yin, Tan Wu, Yangyang Zhang, Chunyun Zhu, Nianping Feng, Teng Guo","doi":"10.2174/0115672018339596241120191113","DOIUrl":"https://doi.org/10.2174/0115672018339596241120191113","url":null,"abstract":"<p><strong>Background: </strong>Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.</p><p><strong>Methods: </strong>Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through in vitro release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.</p><p><strong>Results: </strong>With the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of in vitro release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.</p><p><strong>Conclusion: </strong>The compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.2174/0115672018296163240910111938
Rameshwar Dass, Meenakshi Bhatia, Goutam Rath, Ashwani K Dhingra
Prokinetic agents are drugs used to enhance gastrointestinal motility and treat disorders such as Gastroesophageal Reflux Disease (GERD) and gastroparesis. pH-dependent release systems offer targeted drug delivery, allowing prokinetic agents to be released specifically in desired regions of the gastrointestinal tract. This optimizes drug efficacy and minimizes systemic side effects. Gastroretentive formulations enable sustained drug release, which is particularly beneficial in conditions requiring prolonged gastric residence time, such as gastroparesis. Nanoparticles have emerged as promising carriers for improving prokinetic agent delivery and enhancing drug stability, solubility, and absorption. These nano-systems protect drugs from degradation, leading to improved bioavailability and controlled drug release. Furthermore, incorporating mucoadhesive technologies promotes prolonged drug-mucosa interactions, facilitating enhanced drug absorption and reducing dosing frequency. These recent advancements have the potential to revolutionize the oral drug delivery of prokinetic agents, offering improved therapeutic outcomes, enhanced patient compliance, and reduced side effects. However, scalability, biocompatibility, and safety challenges warrant further investigation and validation through preclinical and clinical studies. This review highlights recent advances in oral drug delivery systems for prokinetic agents, focusing on innovative approaches such as pH-dependent release, gastroretentive formulations, nanoparticles, and mucoadhesive technologies. In conclusion, integrating advanced oral drug delivery systems for prokinetic agents presents a promising avenue for managing gastrointestinal disorders. Continued research and collaboration among academia, industry, and healthcare professionals are crucial to unlocking the full potential of these innovations and ultimately translating them into clinically effective treatments for patients.
{"title":"Recent Developments in Oral Drug Delivery of Prokinetic Agents: Nanoparticles and Beyond.","authors":"Rameshwar Dass, Meenakshi Bhatia, Goutam Rath, Ashwani K Dhingra","doi":"10.2174/0115672018296163240910111938","DOIUrl":"https://doi.org/10.2174/0115672018296163240910111938","url":null,"abstract":"<p><p>Prokinetic agents are drugs used to enhance gastrointestinal motility and treat disorders such as Gastroesophageal Reflux Disease (GERD) and gastroparesis. pH-dependent release systems offer targeted drug delivery, allowing prokinetic agents to be released specifically in desired regions of the gastrointestinal tract. This optimizes drug efficacy and minimizes systemic side effects. Gastroretentive formulations enable sustained drug release, which is particularly beneficial in conditions requiring prolonged gastric residence time, such as gastroparesis. Nanoparticles have emerged as promising carriers for improving prokinetic agent delivery and enhancing drug stability, solubility, and absorption. These nano-systems protect drugs from degradation, leading to improved bioavailability and controlled drug release. Furthermore, incorporating mucoadhesive technologies promotes prolonged drug-mucosa interactions, facilitating enhanced drug absorption and reducing dosing frequency. These recent advancements have the potential to revolutionize the oral drug delivery of prokinetic agents, offering improved therapeutic outcomes, enhanced patient compliance, and reduced side effects. However, scalability, biocompatibility, and safety challenges warrant further investigation and validation through preclinical and clinical studies. This review highlights recent advances in oral drug delivery systems for prokinetic agents, focusing on innovative approaches such as pH-dependent release, gastroretentive formulations, nanoparticles, and mucoadhesive technologies. In conclusion, integrating advanced oral drug delivery systems for prokinetic agents presents a promising avenue for managing gastrointestinal disorders. Continued research and collaboration among academia, industry, and healthcare professionals are crucial to unlocking the full potential of these innovations and ultimately translating them into clinically effective treatments for patients.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.2174/0115672018336704241128101556
Samin Hamidi, Ali Reza Shafiee-Kandjani, Sara Salatin
Due to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders. Nanocarriers, such as polymeric nanoparticles, liposomes, and nanoemulsions, offer unique advantages for enhancing the delivery of various therapeutic agents to the brain via the intranasal route. The methodology involved conducting preliminary searches on databases such as PubMed, ScienceDirect, Web of Science, and Google Scholar using keywords related to "psychiatric disorders, intranasal delivery, nose-to-brain drug delivery, and nano formulations for intranasal delivery." This review highlights the advantages of the intranasal drug delivery pathway as a non-invasive, reliable, and efficient method for targeting the brain by bypassing the BBB. Furthermore, it discusses the application of various novel nanocarrier-based formulations, including nanoparticles, in-situ gels, nanoemulsions, hydrogels, and liposomes, for the effective intranasal delivery of therapeutics in the treatment of psychiatric conditions such as mood and anxiety disorders schizophrenia, and other illnesses.
由于血脑屏障(BBB)以及口服和其他传统给药途径的问题,精神疾病在使治疗药物进入大脑方面面临重大挑战。鼻到脑途径,也被称为鼻内输送,已经显示出克服这些障碍的希望,因为它直接针对大脑,绕过血脑屏障。这篇综述探讨了纳米载体在鼻内给药治疗精神疾病方面的潜力。纳米载体,如聚合纳米颗粒、脂质体和纳米乳液,为通过鼻内途径增强各种治疗药物向大脑的输送提供了独特的优势。该方法包括在PubMed、ScienceDirect、Web of Science和b谷歌Scholar等数据库中进行初步搜索,使用与“精神疾病、鼻内给药、鼻至脑药物给药和鼻内给药纳米配方”相关的关键词。这篇综述强调了鼻内给药途径作为一种绕过血脑屏障靶向大脑的无创、可靠和有效的方法的优势。此外,它还讨论了各种新型纳米载体配方的应用,包括纳米颗粒、原位凝胶、纳米乳液、水凝胶和脂质体,用于治疗精神疾病(如情绪和焦虑症、精神分裂症和其他疾病)的有效鼻内递送疗法。
{"title":"Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders.","authors":"Samin Hamidi, Ali Reza Shafiee-Kandjani, Sara Salatin","doi":"10.2174/0115672018336704241128101556","DOIUrl":"https://doi.org/10.2174/0115672018336704241128101556","url":null,"abstract":"<p><p>Due to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders. Nanocarriers, such as polymeric nanoparticles, liposomes, and nanoemulsions, offer unique advantages for enhancing the delivery of various therapeutic agents to the brain via the intranasal route. The methodology involved conducting preliminary searches on databases such as PubMed, ScienceDirect, Web of Science, and Google Scholar using keywords related to \"psychiatric disorders, intranasal delivery, nose-to-brain drug delivery, and nano formulations for intranasal delivery.\" This review highlights the advantages of the intranasal drug delivery pathway as a non-invasive, reliable, and efficient method for targeting the brain by bypassing the BBB. Furthermore, it discusses the application of various novel nanocarrier-based formulations, including nanoparticles, in-situ gels, nanoemulsions, hydrogels, and liposomes, for the effective intranasal delivery of therapeutics in the treatment of psychiatric conditions such as mood and anxiety disorders schizophrenia, and other illnesses.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}