Sarah Gravel, Jennifer S. Bigman, Sebastián A. Pardo, Serena Wong, Nicholas K. Dulvy
{"title":"Metabolism, population growth, and the fast-slow life history continuum of marine fishes","authors":"Sarah Gravel, Jennifer S. Bigman, Sebastián A. Pardo, Serena Wong, Nicholas K. Dulvy","doi":"10.1111/faf.12811","DOIUrl":null,"url":null,"abstract":"<p>The maximum intrinsic rate of population increase (<i>r</i><sub>max</sub>) represents a population's maximum capacity to replace itself and is central to fisheries management and conservation. Species with lower <i>r</i><sub>max</sub> typically have slower life histories compared to species with faster life histories and higher <i>r</i><sub>max</sub>. Here, we posit that metabolic rate is related to the fast–slow life history continuum and the connection may be stronger for maximum metabolic rate and aerobic scope compared to resting metabolic rate. Specifically, we ask whether variation in <i>r</i><sub>max</sub> or any of its component life-history traits – age-at-maturity, maximum age, and annual reproductive output – explain variation in resting and maximum metabolic rates and aerobic scope across 84 shark and teleost species, while accounting for the effects of measurement temperature, measurement body mass, ecological lifestyle, and evolutionary history. Overall, we find a strong connection between metabolic rate and the fast-slow life history continuum, such that species with faster population growth (higher <i>r</i><sub>max</sub>) generally have higher maximum metabolic rates and broader aerobic scopes. Specifically, <i>r</i><sub>max</sub> is more important in explaining variation in maximum metabolic rate and aerobic scope compared to resting metabolic rate, which is best explained by age-at-maturity (out of the life history traits examined). In conclusion, teleosts and sharks share a common fast–slow physiology/life history continuum, with teleosts generally at the faster end and sharks at the slower end, yet with considerable overlap. Our work improves our understanding of the diversity of fish life histories and may ultimately improve our understanding of intrinsic sensitivity to overfishing.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"25 2","pages":"349-361"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12811","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12811","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The maximum intrinsic rate of population increase (rmax) represents a population's maximum capacity to replace itself and is central to fisheries management and conservation. Species with lower rmax typically have slower life histories compared to species with faster life histories and higher rmax. Here, we posit that metabolic rate is related to the fast–slow life history continuum and the connection may be stronger for maximum metabolic rate and aerobic scope compared to resting metabolic rate. Specifically, we ask whether variation in rmax or any of its component life-history traits – age-at-maturity, maximum age, and annual reproductive output – explain variation in resting and maximum metabolic rates and aerobic scope across 84 shark and teleost species, while accounting for the effects of measurement temperature, measurement body mass, ecological lifestyle, and evolutionary history. Overall, we find a strong connection between metabolic rate and the fast-slow life history continuum, such that species with faster population growth (higher rmax) generally have higher maximum metabolic rates and broader aerobic scopes. Specifically, rmax is more important in explaining variation in maximum metabolic rate and aerobic scope compared to resting metabolic rate, which is best explained by age-at-maturity (out of the life history traits examined). In conclusion, teleosts and sharks share a common fast–slow physiology/life history continuum, with teleosts generally at the faster end and sharks at the slower end, yet with considerable overlap. Our work improves our understanding of the diversity of fish life histories and may ultimately improve our understanding of intrinsic sensitivity to overfishing.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.