Josh M. Cisler, Joseph E. Dunsmoor, Gregory A. Fonzo, Charles B. Nemeroff
{"title":"Latent-state and model-based learning in PTSD","authors":"Josh M. Cisler, Joseph E. Dunsmoor, Gregory A. Fonzo, Charles B. Nemeroff","doi":"10.1016/j.tins.2023.12.002","DOIUrl":null,"url":null,"abstract":"<p>Post-traumatic stress disorder (PTSD) is characterized by altered emotional and behavioral responding following a traumatic event. In this article, we review the concepts of latent-state and model-based learning (i.e., learning and inferring abstract task representations) and discuss their relevance for clinical and neuroscience models of PTSD. Recent data demonstrate evidence for brain and behavioral biases in these learning processes in PTSD. These new data potentially recast excessive fear towards trauma cues as a problem in learning and updating abstract task representations, as opposed to traditional conceptualizations focused on stimulus-specific learning. Biases in latent-state and model-based learning may also be a common mechanism targeted in common therapies for PTSD. We highlight key knowledge gaps that need to be addressed to further elaborate how latent-state learning and its associated neurocircuitry mechanisms function in PTSD and how to optimize treatments to target these processes.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2023.12.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Post-traumatic stress disorder (PTSD) is characterized by altered emotional and behavioral responding following a traumatic event. In this article, we review the concepts of latent-state and model-based learning (i.e., learning and inferring abstract task representations) and discuss their relevance for clinical and neuroscience models of PTSD. Recent data demonstrate evidence for brain and behavioral biases in these learning processes in PTSD. These new data potentially recast excessive fear towards trauma cues as a problem in learning and updating abstract task representations, as opposed to traditional conceptualizations focused on stimulus-specific learning. Biases in latent-state and model-based learning may also be a common mechanism targeted in common therapies for PTSD. We highlight key knowledge gaps that need to be addressed to further elaborate how latent-state learning and its associated neurocircuitry mechanisms function in PTSD and how to optimize treatments to target these processes.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.