Nurul Fatimah Abdul Basir , Mahta Ghafarikhaligh , Mohd Rafie Johan , Nader Ghaffari Khaligh
{"title":"Mono-cyclopentyl substituted [1,3,4]thiadiazole thione tautomer: study of the spectroscopic, geometric, thermal, and biological properties","authors":"Nurul Fatimah Abdul Basir , Mahta Ghafarikhaligh , Mohd Rafie Johan , Nader Ghaffari Khaligh","doi":"10.1080/17415993.2024.2302032","DOIUrl":null,"url":null,"abstract":"<div><p>Regarding the importance of thiol-thione tautomer structure and the existence of hydrogen bonding in thione tautomer structure and its effect on geometric, physicochemical, and biological properties, mono-cyclopentyl-substituted bismuthiol was synthesized <em>via</em> a telescopic process in a green medium. The pure product was characterized by physical and spectroscopic techniques. The suitable crystals for single crystal study were obtained after trying different solvents and mixed solvents, and long clear needle-like crystals could be isolated from a mixture of <em>n</em>-hexane and ethyl acetate (volume ratio of 8:2). The FTIR spectra of bismuthiol, 2,5-bis-cyclopentylsulfanyl-[1,3,4]thiadiazole, and 5-cyclopentylsulfanyl-3H-[1,3,4]thiadiazole-2-thione were studied to define the characteristic wavenumbers of thiol and thione structures. A possible hyper-conjugative interaction between the S–H and π bond of C=N, the existence of C=S and C–N–H. and stability of thione structure was demonstrated for the new product, which supports our prediction of thione or thiol structure using the study of IR spectra. Furthermore, the influence of change in 1,3,4-thiadiazol ring and the presence N–H functional group of thione structure on the transition phases and thermal stability of bismuthiol, bis-cyclopentyl-substituted, and mono-cyclopentyl-substituted bismuthiol were investigated using TGA/DTA and DSC profile analysis. The SwissADME tool was employed to predict the biocheminformatic information of bismuthiol, bis- and mono-cyclopentyl-substituted bismuthiols, which displayed high potential of all 1,3,4-thiadizole derivatives in pharmaceutical and medicine areas. Finally, an <em>in vit</em>ro antibacterial activity of the mono- and bis-cyclopentyl substituted bismuthiol against the gram-negative (<em>Escherichia coli</em> ATCC 25922) and gram-positive (<em>Staphylococcus aureus</em> ATCC 25923) bacterial species was conducted by the disk diffusion method with cefazolin as a blank antibiotic. The results showed superior antibacterial efficiency of both derivatives.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":"45 3","pages":"Pages 378-394"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599324000023","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Regarding the importance of thiol-thione tautomer structure and the existence of hydrogen bonding in thione tautomer structure and its effect on geometric, physicochemical, and biological properties, mono-cyclopentyl-substituted bismuthiol was synthesized via a telescopic process in a green medium. The pure product was characterized by physical and spectroscopic techniques. The suitable crystals for single crystal study were obtained after trying different solvents and mixed solvents, and long clear needle-like crystals could be isolated from a mixture of n-hexane and ethyl acetate (volume ratio of 8:2). The FTIR spectra of bismuthiol, 2,5-bis-cyclopentylsulfanyl-[1,3,4]thiadiazole, and 5-cyclopentylsulfanyl-3H-[1,3,4]thiadiazole-2-thione were studied to define the characteristic wavenumbers of thiol and thione structures. A possible hyper-conjugative interaction between the S–H and π bond of C=N, the existence of C=S and C–N–H. and stability of thione structure was demonstrated for the new product, which supports our prediction of thione or thiol structure using the study of IR spectra. Furthermore, the influence of change in 1,3,4-thiadiazol ring and the presence N–H functional group of thione structure on the transition phases and thermal stability of bismuthiol, bis-cyclopentyl-substituted, and mono-cyclopentyl-substituted bismuthiol were investigated using TGA/DTA and DSC profile analysis. The SwissADME tool was employed to predict the biocheminformatic information of bismuthiol, bis- and mono-cyclopentyl-substituted bismuthiols, which displayed high potential of all 1,3,4-thiadizole derivatives in pharmaceutical and medicine areas. Finally, an in vitro antibacterial activity of the mono- and bis-cyclopentyl substituted bismuthiol against the gram-negative (Escherichia coli ATCC 25922) and gram-positive (Staphylococcus aureus ATCC 25923) bacterial species was conducted by the disk diffusion method with cefazolin as a blank antibiotic. The results showed superior antibacterial efficiency of both derivatives.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.