{"title":"Converting heterotrophic Saccharomyces cerevisiae to a synthetic methylotroph","authors":"Pan Zhu, Ziqi Zhang, Yufei Li","doi":"10.1016/j.trechm.2023.12.004","DOIUrl":null,"url":null,"abstract":"<p>It is challenging to convert a non-methylotrophic yeast to a synthetic methylotroph. In a recently described new method, <span>Nielsen, Keasling, Chen, Bai, and coworkers</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"8px\" viewbox=\"0 0 8 8\" width=\"8px\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg> show that <em>Saccharomyces cerevisiae</em> can be engineered to grow solely on methanol, which potentially emerges as a promising platform for one-carbon (C1)-based biomanufacturing.</p>","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"67 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.trechm.2023.12.004","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is challenging to convert a non-methylotrophic yeast to a synthetic methylotroph. In a recently described new method, Nielsen, Keasling, Chen, Bai, and coworkers show that Saccharomyces cerevisiae can be engineered to grow solely on methanol, which potentially emerges as a promising platform for one-carbon (C1)-based biomanufacturing.
期刊介绍:
Trends in Chemistry serves as a new global platform for discussing significant and transformative concepts across all areas of chemistry. It recognizes that breakthroughs in chemistry hold the key to addressing major global challenges. The journal offers readable, multidisciplinary articles, including reviews, opinions, and short pieces, designed to keep both students and leading scientists updated on pressing issues in the field.
Covering analytical, inorganic, organic, physical, and theoretical chemistry, the journal highlights major themes such as biochemistry, catalysis, environmental chemistry, materials, medicine, polymers, and supramolecular chemistry. It also welcomes articles on chemical education, health and safety, policy and public relations, and ethics and law.