DEVELOPMENT OF A 14C PROTOCOL AT THE LMC14 FOR THE DATING OF CULTURAL HERITAGE MATERIALS: HISTORICAL MORTARS. PARTICIPATION IN THE MODIS INTERNATIONAL INTERCOMPARISON CAMPAIGN
Christophe Moreau, Jean-Pascal Dumoulin, Maguy Jaber, Ingrid Caffy, Emmanuelle Delqué-Količ, Cédric Goulas, Stéphane Hain, Marion Perron, Valérie Setti, Marc Sieudat, Bruno Thellier, Lucile Beck
{"title":"DEVELOPMENT OF A 14C PROTOCOL AT THE LMC14 FOR THE DATING OF CULTURAL HERITAGE MATERIALS: HISTORICAL MORTARS. PARTICIPATION IN THE MODIS INTERNATIONAL INTERCOMPARISON CAMPAIGN","authors":"Christophe Moreau, Jean-Pascal Dumoulin, Maguy Jaber, Ingrid Caffy, Emmanuelle Delqué-Količ, Cédric Goulas, Stéphane Hain, Marion Perron, Valérie Setti, Marc Sieudat, Bruno Thellier, Lucile Beck","doi":"10.1017/rdc.2023.118","DOIUrl":null,"url":null,"abstract":"<p>The absolute dating of mortar by accelerator mass spectrometry (AMS) has been the subject of renewed interest for several years. International intercomparison campaigns, called MODIS (MOrtar Dating Intercomparison Study), have been carried out. The first MODIS-1 campaign highlighted limitations in mortar dating, due to the similarity between the primary material to be dated (binder) and the contaminant (exogenous CaCO<span>3</span>). Methods have since emerged to overcome this problem and the need for a good preliminary characterization has been proven. The Laboratoire de Mesure du Carbone 14 (LMC14) took part in the second intercomparison campaign, MODIS2, by applying thermal decomposition increments to distinguish the carbonated binder, the organic matter contaminants (late in formation pyrogenic carbonate, LDH) and limestone. The LMC14 results on MODIS2 are quite conclusive on “pure” re-carbonated lime mortar binders containing little contaminant geological limestone but show their weaknesses for mortars heavily contaminated in Dolomites, which are difficult to discern from the binder. Recommendations for users of radiocarbon (<span>14</span>C) dating on mortar-based materials are made in the conclusion.</p>","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2023.118","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The absolute dating of mortar by accelerator mass spectrometry (AMS) has been the subject of renewed interest for several years. International intercomparison campaigns, called MODIS (MOrtar Dating Intercomparison Study), have been carried out. The first MODIS-1 campaign highlighted limitations in mortar dating, due to the similarity between the primary material to be dated (binder) and the contaminant (exogenous CaCO3). Methods have since emerged to overcome this problem and the need for a good preliminary characterization has been proven. The Laboratoire de Mesure du Carbone 14 (LMC14) took part in the second intercomparison campaign, MODIS2, by applying thermal decomposition increments to distinguish the carbonated binder, the organic matter contaminants (late in formation pyrogenic carbonate, LDH) and limestone. The LMC14 results on MODIS2 are quite conclusive on “pure” re-carbonated lime mortar binders containing little contaminant geological limestone but show their weaknesses for mortars heavily contaminated in Dolomites, which are difficult to discern from the binder. Recommendations for users of radiocarbon (14C) dating on mortar-based materials are made in the conclusion.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.