Leilei Ji, Bao Xiao, Ziang Yin, Qihao Sun, Yadong Xu, Wanqi Jie
{"title":"Refined Synthesis and Single Crystal Growth of PbGa2Se4 by Chemical Vapor Transport Method for Photodetection","authors":"Leilei Ji, Bao Xiao, Ziang Yin, Qihao Sun, Yadong Xu, Wanqi Jie","doi":"10.1002/crat.202300276","DOIUrl":null,"url":null,"abstract":"<p>Ternary chalcogenide PbGa<sub>2</sub>Se<sub>4</sub> with high resistivity, photosensitivity, and excellent nonlinear properties, exhibits a potential application in optoelectronic and nonlinear optical devices. However, the preparation of large-sized pure PbGa<sub>2</sub>Se<sub>4</sub> crystals is challenging due to the presence of peritectic reaction <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>+</mo>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <msub>\n <mi>a</mi>\n <mn>2</mn>\n </msub>\n <mi>S</mi>\n <msub>\n <mi>e</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>P</mi>\n <mi>b</mi>\n <mi>G</mi>\n <msub>\n <mi>a</mi>\n <mn>2</mn>\n </msub>\n <mi>S</mi>\n <msub>\n <mi>e</mi>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation>${\\mathrm{L}} + {{\\alpha}}( {G{a}_2S{e}_3} ) \\to PbG{a}_2S{e}_4$</annotation>\n </semantics></math> and a narrow homogeneity region. Here, a “quenching-annealing” method (quenching at 850 °C in ice water, and then annealing at 650 °C for 250 h by reheating) is developed to eliminate the PbSe second phase during the synthesis. Subsequently, the PbGa<sub>2</sub>Se<sub>4</sub> single crystals are successfully grown using chemical vapor transport (CVT) with the I<sub>2</sub> as the transport agent. The resulting crystal exhibits the crystal structure belonging to <i>Fddd</i> space group with the lattice parameters of <i>a</i> = 12.7192 Å, <i>b</i> = 21.2831 Å, and <i>c</i> = 21.5226 Å. Additionally, it possesses a wide bandgap (≈2.26 eV), high resistivity (6.59 × 10<sup>12</sup> Ω·cm), and defect density calculated via space charge limited current measurement (SCLC) as 2.46 × 10<sup>11</sup> cm<sup>−3</sup>. Photodetectors based on these as-grown crystals demonstrate exceptional photosensitivity along with a high detectivity (3.2 × 10<sup>8</sup> Jones).</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300276","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Ternary chalcogenide PbGa2Se4 with high resistivity, photosensitivity, and excellent nonlinear properties, exhibits a potential application in optoelectronic and nonlinear optical devices. However, the preparation of large-sized pure PbGa2Se4 crystals is challenging due to the presence of peritectic reaction and a narrow homogeneity region. Here, a “quenching-annealing” method (quenching at 850 °C in ice water, and then annealing at 650 °C for 250 h by reheating) is developed to eliminate the PbSe second phase during the synthesis. Subsequently, the PbGa2Se4 single crystals are successfully grown using chemical vapor transport (CVT) with the I2 as the transport agent. The resulting crystal exhibits the crystal structure belonging to Fddd space group with the lattice parameters of a = 12.7192 Å, b = 21.2831 Å, and c = 21.5226 Å. Additionally, it possesses a wide bandgap (≈2.26 eV), high resistivity (6.59 × 1012 Ω·cm), and defect density calculated via space charge limited current measurement (SCLC) as 2.46 × 1011 cm−3. Photodetectors based on these as-grown crystals demonstrate exceptional photosensitivity along with a high detectivity (3.2 × 108 Jones).
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing