Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm.

IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Molecular Oral Microbiology Pub Date : 2024-10-01 Epub Date: 2024-01-11 DOI:10.1111/omi.12451
Wenxin Luo, Mengdie Zhang, Xuedong Zhou, Xin Xu, Xingqun Cheng
{"title":"Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm.","authors":"Wenxin Luo, Mengdie Zhang, Xuedong Zhou, Xin Xu, Xingqun Cheng","doi":"10.1111/omi.12451","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"261-269"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12451","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自变异链球菌的多酮苷/非核糖体肽及其在牙科生物膜中的生态作用。
变异链球菌是人类龋齿的主要病原体。变异链球菌在牙齿生物膜中过度生长会引发生物膜菌群失调,最终导致龋齿的发生或发展。多酮苷和非核糖体肽(PKs/NRPs)是结构复杂的次级代谢产物,由一组生物合成基因编码。虽然 PKs/NRPs 并非微生物生长所必需,但在生理调节方面却发挥着重要作用。目前已在变异棒状杆菌中发现三大类混合 PKs/NRPs,包括 mutanobactin、mutanocyclin 和 mutanofactin,分别由 mub、muc 和 muf 基因簇编码。这三种混合 PKs/NRPs 在变异棒状杆菌的环境适应、生物膜形成和种间竞争中发挥着重要作用。在这篇综述中,我们概述了变异杆菌的主要杂交 PKs/NRPs,包括变异杆菌素、变异环素和变异半乳糖素,并探讨了它们在牙科生物膜中的生态作用。我们特别强调了一些尚待解答的重要问题,以便为了解变异棒状杆菌的致龋机制提供新的视角,并促进龋病管理的改善。我们强调,变异杆菌 PKs/NRPs 可能是预防和治疗变异杆菌诱发的龋齿的潜在新靶点。基因组学、代谢组学和质谱分析技术的发展,以及各种数据库和生物信息学工具的整合,将有助于鉴定和合成其他次生代谢物。阐明它们的理化性质及其在口腔生物膜中的生态作用,对于确定龋齿生态管理的新目标至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Oral Microbiology
Molecular Oral Microbiology DENTISTRY, ORAL SURGERY & MEDICINE-MICROBIOLOGY
CiteScore
6.50
自引率
5.40%
发文量
46
审稿时长
>12 weeks
期刊介绍: Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections. Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal. The journal does not publish Short Communications or Letters to the Editor. Molecular Oral Microbiology is published bimonthly.
期刊最新文献
NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis. The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. Effect of toxins from different periodontitis-associated bacteria on human platelet function. High-throughput characterization of the influence of Streptococcus sanguinis genes on the interaction between Streptococcus sanguinis and Porphyromonas gingivalis. Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1