首页 > 最新文献

Molecular Oral Microbiology最新文献

英文 中文
Suppressive Effects of Kouboku on Methyl Mercaptan Production and Biofilm Formation in Porphyromonas gingivalis. Kouboku 对牙龈卟啉单胞菌产生甲硫醇和形成生物膜的抑制作用
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-27 DOI: 10.1111/omi.12493
Yuri Taniguchi, Kazuhisa Ouhara, Yoko Sato, Mikio Shoji, Yitong Hou, Ruoqi Zhai, Ryousuke Fujimori, Naoya Kuwahara, Tetsuya Tamura, Shinji Matsuda, Noriyoshi Mizuno

Porphyromonas gingivalis, the bacterium responsible for periodontitis, produces several pathogenic factors, including methyl mercaptan, which contribute to the disease. Kouboku (Magnoliaceae), a Chinese herbal medicine, has been shown to suppress methyl mercaptan production from P. gingivalis. In this study, we investigated the inhibitory effect of Kouboku on methyl mercaptan production, biofilm formation, P. gingivalis-host cell interactions, and its potential synergistic antibacterial effect with antibiotics. Five standard and five clinically isolated P. gingivalis strains were evaluated. Methyl mercaptan production was measured using OralChroma. The mRNA expression of mgl and fimA, which are involved in methyl mercaptan synthesis and adhesion molecules, was assessed using quantitative PCR. Biofilm formation by P. gingivalis and epithelial cell adhesion were analyzed following treatment with or without Kouboku. Furthermore, the effects of the active ingredients of Kouboku, honokiol, and magnolol, on the minimum inhibitory concentrations (MICs) of antibiotics against P. gingivalis were determined. No significant differences were observed in the suppression of methyl mercaptan production among P. gingivalis strains with different FimA genotypes treated with Kouboku. Moreover, Kouboku inhibited biofilm formation in co-cultures of P. gingivalis and Fusobacterium nucleatum, as well as the adhesion of P. gingivalis to gingival epithelial cells through the downregulation of fimA. Treatment with honokiol and magnolol reduced the MICs of ampicillin, gentamicin, erythromycin, and tetracycline against P. gingivalis. These findings demonstrate that Kouboku affects P. gingivalis by modulating its adhesion to other bacteria and host cells, and enhances the antibacterial activity of certain antibiotics.

牙龈卟啉单胞菌是导致牙周炎的细菌,它会产生包括甲硫醇在内的多种致病因子,从而导致牙周炎。中药材厚朴能抑制牙龈卟啉单胞菌产生甲硫醇。在本研究中,我们研究了 Kouboku 对甲硫醇产生、生物膜形成、牙龈脓胞-宿主细胞相互作用的抑制作用,以及它与抗生素的潜在协同抗菌作用。对五株标准菌株和五株临床分离的牙龈脓肿菌株进行了评估。使用 OralChroma 测定甲硫醇的产生。使用定量 PCR 评估了参与甲硫醇合成和粘附分子的 mgl 和 fimA 的 mRNA 表达。在使用或不使用 Kouboku 的情况下,分析了牙龈脓疱桿菌的生物膜形成和上皮细胞粘附情况。此外,还测定了 Kouboku 的有效成分 honokiol 和 magnolol 对抗生素对牙龈脓胞的最小抑菌浓度 (MIC) 的影响。用 Kouboku 处理不同 FimA 基因型的牙龈脓肿菌株,在抑制甲硫醇生成方面没有发现明显差异。此外,Kouboku 还通过下调 fimA 抑制了牙龈脓胞和核酸镰刀菌共培养物中生物膜的形成,以及牙龈脓胞与牙龈上皮细胞的粘附。用 honokiol 和 magnolol 治疗可降低氨苄西林、庆大霉素、红霉素和四环素对牙龈脓胞的 MICs。这些研究结果表明,Kouboku 可通过调节牙龈脓疱疮杆菌与其他细菌和宿主细胞的粘附力来影响它,并增强某些抗生素的抗菌活性。
{"title":"Suppressive Effects of Kouboku on Methyl Mercaptan Production and Biofilm Formation in Porphyromonas gingivalis.","authors":"Yuri Taniguchi, Kazuhisa Ouhara, Yoko Sato, Mikio Shoji, Yitong Hou, Ruoqi Zhai, Ryousuke Fujimori, Naoya Kuwahara, Tetsuya Tamura, Shinji Matsuda, Noriyoshi Mizuno","doi":"10.1111/omi.12493","DOIUrl":"https://doi.org/10.1111/omi.12493","url":null,"abstract":"<p><p>Porphyromonas gingivalis, the bacterium responsible for periodontitis, produces several pathogenic factors, including methyl mercaptan, which contribute to the disease. Kouboku (Magnoliaceae), a Chinese herbal medicine, has been shown to suppress methyl mercaptan production from P. gingivalis. In this study, we investigated the inhibitory effect of Kouboku on methyl mercaptan production, biofilm formation, P. gingivalis-host cell interactions, and its potential synergistic antibacterial effect with antibiotics. Five standard and five clinically isolated P. gingivalis strains were evaluated. Methyl mercaptan production was measured using OralChroma. The mRNA expression of mgl and fimA, which are involved in methyl mercaptan synthesis and adhesion molecules, was assessed using quantitative PCR. Biofilm formation by P. gingivalis and epithelial cell adhesion were analyzed following treatment with or without Kouboku. Furthermore, the effects of the active ingredients of Kouboku, honokiol, and magnolol, on the minimum inhibitory concentrations (MICs) of antibiotics against P. gingivalis were determined. No significant differences were observed in the suppression of methyl mercaptan production among P. gingivalis strains with different FimA genotypes treated with Kouboku. Moreover, Kouboku inhibited biofilm formation in co-cultures of P. gingivalis and Fusobacterium nucleatum, as well as the adhesion of P. gingivalis to gingival epithelial cells through the downregulation of fimA. Treatment with honokiol and magnolol reduced the MICs of ampicillin, gentamicin, erythromycin, and tetracycline against P. gingivalis. These findings demonstrate that Kouboku affects P. gingivalis by modulating its adhesion to other bacteria and host cells, and enhances the antibacterial activity of certain antibiotics.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Environmental Factors on the Nitrate and Nitrite Metabolism of Oral Actinomyces and Schaalia Species.
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-06 DOI: 10.1111/omi.12492
Tomona Otake, Jumpei Washio, Kazuko Ezoe, Satoko Sato, Yuki Abiko, Kaoru Igarashi, Nobuhiro Takahashi

Actinomyces naeslundii and Schaalia odontolytica belong to the most predominant nitrite-producing bacteria in the oral microbiome. Nitrite has antibacterial and vasodilatory effects that may contribute to maintaining oral and systemic health. We have previously elucidated the metabolic characteristics of the nitrite-producing activity of oral Veillonella species and the effects of oral environmental factors. However, this is still unknown for Actinomyces and Schaalia species. Furthermore, these bacteria are thought to degrade nitrite. Therefore, this study aimed to comprehensively elucidate the effects of environmental factors (pH, oxygen concentration, glucose, lactate, and the presence of nitrate/nitrite during growth) on nitrate and nitrite metabolism of these bacterial species using the type strains. Nitrite was quantified by Griess reagent, and final metabolites were analyzed by high-performance liquid chromatography (HPLC). The nitrite-producing activity of A. naeslundii and S. odontolytica was affected variously by environmental factors. Especially in A. naeslundii, under anaerobic conditions, the activity increased in a concentration-dependent manner with the addition of glucose or lactate and was higher at lower pH when lactate was added. The nitrite-degrading activity of both bacteria was lower than the nitrite-producing activity and was less affected by environmental factors. Metabolites from glucose by A. naeslundii were different with and without nitrate, suggesting that nitrate altered metabolic pathways. The growth was inhibited under anaerobic conditions but promoted under aerobic conditions. These results indicate that the nitrite-producing capacity of the oral microflora must take into account not only the composition and abundance of bacteria but also the variation in metabolic activity due to various environmental factors.

{"title":"The Effect of Environmental Factors on the Nitrate and Nitrite Metabolism of Oral Actinomyces and Schaalia Species.","authors":"Tomona Otake, Jumpei Washio, Kazuko Ezoe, Satoko Sato, Yuki Abiko, Kaoru Igarashi, Nobuhiro Takahashi","doi":"10.1111/omi.12492","DOIUrl":"https://doi.org/10.1111/omi.12492","url":null,"abstract":"<p><p>Actinomyces naeslundii and Schaalia odontolytica belong to the most predominant nitrite-producing bacteria in the oral microbiome. Nitrite has antibacterial and vasodilatory effects that may contribute to maintaining oral and systemic health. We have previously elucidated the metabolic characteristics of the nitrite-producing activity of oral Veillonella species and the effects of oral environmental factors. However, this is still unknown for Actinomyces and Schaalia species. Furthermore, these bacteria are thought to degrade nitrite. Therefore, this study aimed to comprehensively elucidate the effects of environmental factors (pH, oxygen concentration, glucose, lactate, and the presence of nitrate/nitrite during growth) on nitrate and nitrite metabolism of these bacterial species using the type strains. Nitrite was quantified by Griess reagent, and final metabolites were analyzed by high-performance liquid chromatography (HPLC). The nitrite-producing activity of A. naeslundii and S. odontolytica was affected variously by environmental factors. Especially in A. naeslundii, under anaerobic conditions, the activity increased in a concentration-dependent manner with the addition of glucose or lactate and was higher at lower pH when lactate was added. The nitrite-degrading activity of both bacteria was lower than the nitrite-producing activity and was less affected by environmental factors. Metabolites from glucose by A. naeslundii were different with and without nitrate, suggesting that nitrate altered metabolic pathways. The growth was inhibited under anaerobic conditions but promoted under aerobic conditions. These results indicate that the nitrite-producing capacity of the oral microflora must take into account not only the composition and abundance of bacteria but also the variation in metabolic activity due to various environmental factors.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of thioredoxin-thioredoxin reductase system in Filifactor alocis. Filifactor alocis 中硫氧化还原酶系统的特征。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-10-20 DOI: 10.1111/omi.12486
Arunima Mishra, Yuetan Dou, Hansel M Fletcher

Introduction: Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket. The aim of this study is to investigate if F. alocis putative peroxiredoxin/AhpC protein FA768 may constitute an alkyl hydroperoxide reductase system utilizing putative thioredoxin reductase protein FA608, and putative thioredoxin/glutaredoxin homolog FA1411/FA455.

Methods: FA768, FA608, FA1411 and FA455 proteins from F. alocis were expressed and purified from Escherichia coli. Insulin and 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) reduction assays were performed to determine if purified FA1411 and FA455 proteins could be a substrate for FA608. The peroxidase activity of FA768 was examined by measuring its ability to reduce hydrogen peroxide (H2O2) with FA608 and FA1411/FA455 provided as the reducing systems. Further, the hydroperoxide substrate specificity of FA768 was analyzed by monitoring the NADPH oxidation in the presence of different peroxides, including H2O2, cumyl hydroperoxide (CHP), and tert-butyl hydroperoxide (t-BHP).

Results: In this study, we have demonstrated the existence of a functioning thioredoxin-dependent alkyl hydroperoxide system in F. alocis. This system is comprised of a thioredoxin reductase (FA608), a thioredoxin/glutaredoxin homolog (FA1411/FA455), and a typical 2-cysteine peroxiredoxin/AhpC (FA768). FA608, together with FA1411/FA455, can function as a thioredoxin reductase system to reduce insulin, DTNB, and FA768. FA455 is a glutaredoxin-like protein with thioredoxin functions in F. alocis. Both the FA768/FA608/FA1411 and FA768/FA608/FA455 reductase systems were NADPH-dependent and exhibited specificity for broad hydroperoxide substrates H2O2, CHP, and t-BHP.

Conclusions: This is the first study of a thioredoxin dependent alkyl hydroperoxide system from a periodontal pathogen. This system is proposed to protect F. alocis against oxidative stress due to the likely absence of a catalase or an additional peroxiredoxin homolog.

导言:Filifactor alocis 是牙周病群体中新近受到重视的成员,与牙周病密切相关。人们对 F. alocis 应对氧化应激并在牙周袋局部炎症微环境中建立感染的生存机制知之甚少。本研究旨在探讨 F. alocis 推测的过氧化氢还原酶/AhpC 蛋白 FA768 是否可能利用推测的硫氧还原酶蛋白 FA608 和推测的硫氧还原酶/谷氨酰还原酶同源物 FA1411/FA455,构成一个烷基过氧化氢还原酶系统:方法:从大肠杆菌中表达并纯化了 F. alocis 的 FA768、FA608、FA1411 和 FA455 蛋白。进行了胰岛素和 5,5-二硫双-2-硝基苯甲酸(DTNB)还原试验,以确定纯化的 FA1411 和 FA455 蛋白是否可作为 FA608 的底物。通过测定 FA768 以 FA608 和 FA1411/FA455 为还原体系还原过氧化氢(H2O2)的能力,检验了 FA768 的过氧化物酶活性。此外,通过监测在不同过氧化物(包括 H2O2、积雪草过氧化氢(CHP)和叔丁基过氧化氢(t-BHP))存在下的 NADPH 氧化作用,分析了 FA768 的过氧化氢底物特异性:结果:在这项研究中,我们证明了 F. alocis 中存在一个依赖硫代氧化还蛋白的烷基过氧化氢系统。该系统由一个硫氧还原酶(FA608)、一个硫氧还原酶/谷硫磷同源物(FA1411/FA455)和一个典型的 2-半胱氨酸过氧化还原酶/AhpC(FA768)组成。FA608 与 FA1411/FA455 一起,可作为硫代氧化还原酶系统来还原胰岛素、DTNB 和 FA768。FA455 是一种类似于谷胱甘肽的蛋白质,在 F. alocis 中具有硫代毒素功能。FA768/FA608/FA1411和FA768/FA608/FA455还原酶系统都依赖于NADPH,并对广泛的过氧化氢底物H2O2、CHP和t-BHP表现出特异性:这是首次研究牙周病原体的硫代氧化还原酶依赖性烷基过氧化氢系统。由于可能缺乏过氧化氢酶或额外的过氧化还原酶同源物,该系统可保护 F. alocis 免受氧化应激。
{"title":"Characterization of thioredoxin-thioredoxin reductase system in Filifactor alocis.","authors":"Arunima Mishra, Yuetan Dou, Hansel M Fletcher","doi":"10.1111/omi.12486","DOIUrl":"10.1111/omi.12486","url":null,"abstract":"<p><strong>Introduction: </strong>Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket. The aim of this study is to investigate if F. alocis putative peroxiredoxin/AhpC protein FA768 may constitute an alkyl hydroperoxide reductase system utilizing putative thioredoxin reductase protein FA608, and putative thioredoxin/glutaredoxin homolog FA1411/FA455.</p><p><strong>Methods: </strong>FA768, FA608, FA1411 and FA455 proteins from F. alocis were expressed and purified from Escherichia coli. Insulin and 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) reduction assays were performed to determine if purified FA1411 and FA455 proteins could be a substrate for FA608. The peroxidase activity of FA768 was examined by measuring its ability to reduce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) with FA608 and FA1411/FA455 provided as the reducing systems. Further, the hydroperoxide substrate specificity of FA768 was analyzed by monitoring the NADPH oxidation in the presence of different peroxides, including H<sub>2</sub>O<sub>2</sub>, cumyl hydroperoxide (CHP), and tert-butyl hydroperoxide (t-BHP).</p><p><strong>Results: </strong>In this study, we have demonstrated the existence of a functioning thioredoxin-dependent alkyl hydroperoxide system in F. alocis. This system is comprised of a thioredoxin reductase (FA608), a thioredoxin/glutaredoxin homolog (FA1411/FA455), and a typical 2-cysteine peroxiredoxin/AhpC (FA768). FA608, together with FA1411/FA455, can function as a thioredoxin reductase system to reduce insulin, DTNB, and FA768. FA455 is a glutaredoxin-like protein with thioredoxin functions in F. alocis. Both the FA768/FA608/FA1411 and FA768/FA608/FA455 reductase systems were NADPH-dependent and exhibited specificity for broad hydroperoxide substrates H<sub>2</sub>O<sub>2</sub>, CHP, and t-BHP.</p><p><strong>Conclusions: </strong>This is the first study of a thioredoxin dependent alkyl hydroperoxide system from a periodontal pathogen. This system is proposed to protect F. alocis against oxidative stress due to the likely absence of a catalase or an additional peroxiredoxin homolog.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"50-63"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. CRISPR-Cas 系统在牙周病发病机制中的作用以及牙周治疗的潜力:综述。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-09-03 DOI: 10.1111/omi.12483
Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra

Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.

成簇的规则间隔短回文重复序列(CRISPRs)是一种能够编辑宿主基因组序列的 DNA 序列。CRISPR 及其特定的 CRISPR 相关(Cas)蛋白复合物已被用于各种应用。这些应用包括激活或抑制特定基因序列,或作为分子剪刀精确剪切和修改宿主 DNA。CRISPR-Cas 系统也天然存在于许多口腔细菌中,它们有助于营养、生物膜形成、种间和种内交流(法定人数感应)、水平基因转移、毒力、炎症调节、合并感染和免疫反应规避。它甚至还能发挥适应性免疫系统的功能,通过靶向和降解微生物的 DNA 来抵御入侵病毒和其他细菌的外来遗传因子。最近,CRISPR-Cas 系统已作为分子编辑工具进行了测试,以操纵与牙周疾病(如牙周炎)相关的特定基因,并作为输送抗菌剂以克服抗菌剂耐药性的新方法。随着CRISPR在治疗炎症性疾病方面的作用迅速增强,它在牙周病方面的应用也越来越受欢迎。因此,本综述旨在讨论口腔微生物中不同类型的CRISPR-Cas及其在牙周病发病机制和牙周病精准治疗中的作用。
{"title":"Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review.","authors":"Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra","doi":"10.1111/omi.12483","DOIUrl":"10.1111/omi.12483","url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"1-16"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salivary microbiome and biomarker characteristics of diabetics with periodontitis. 患有牙周炎的糖尿病患者的唾液微生物组和生物标志物特征。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-10-01 DOI: 10.1111/omi.12485
Jeffrey L Ebersole, Sreenatha S Kirakodu, Xiahou Zhang, Dolph Dawson, Craig S Miller

Objective: To examine the characteristics of the salivary microbiome in Type 2 diabetes mellitus (T2DM) patients with or without periodontitis.

Background: Periodontitis has been identified as clear sequelae of T2DM. This chronic oral disease also impacts the management of the clinical features of diabetes. The oral microbiome characteristics in T2DM with and without periodontitis, as well as the response of this oral microbiome to nonsurgical therapy have not been well described. Knowledge of key oral biological features could help address the observed poorer clinical presentation of T2DM patients.

Methods: The oral microbiome in saliva of adult cohorts periodontally healthy/non-diabetic (non-periodontitis; NP; n = 31), T2DM without periodontitis (DWoP; n = 32), and T2DM with periodontitis (DWP; n = 29) were characterized by microbial molecular analysis using V3-V4 sequencing and Luminex or ELISA techniques for salivary host analytes.

Results: Phyla distribution showed DWP with significantly lower levels of Firmicutes and Actinobacteria and higher levels of Fusobacteria and Spirochetes compared to the healthier groups. Approximately 10% of the detected microbial species showed significant differences in frequency and level of colonization among the DWP, DWoP, and NP samples. A subset of bacteria were significantly correlated with clinical disease features, as well as a specific repertoire of salivary analytes, in particular matrix metalloproteinase (MMP)8/MMP9, interleukin-1ß, B-cell activating factor, and resistin differed between the groups and were related to specific taxa. Principal component analysis that identified a majority of the DWP subjects microbiome was unique based upon an array of 27 taxa out of up to 255 detected in the saliva samples.

Conclusion: T2DM patients with periodontitis show unique oral microbiome and salivary analyte composition compared to diabetics or non-diabetic persons without periodontitis. Specific members of the oral microbiome relate directly to the clinical disease features and/or salivary biomolecules in T2DM individuals.

摘要研究患有或未患有牙周炎的 2 型糖尿病(T2DM)患者唾液微生物组的特征:背景:牙周炎已被确定为 T2DM 的明显后遗症。背景:牙周炎已被确定为 T2DM 的明显后遗症,这种慢性口腔疾病也会影响糖尿病临床特征的管理。对于患有或未患有牙周炎的 T2DM 患者的口腔微生物组特征,以及这种口腔微生物组对非手术疗法的反应还没有很好的描述。了解关键的口腔生物学特征有助于解决观察到的 T2DM 患者较差的临床表现:方法:使用 V3-V4 测序和唾液宿主分析物的 Luminex 或 ELISA 技术对牙周健康/非糖尿病(非牙周炎;NP;n = 31)、无牙周炎的 T2DM(DWoP;n = 32)和牙周炎的 T2DM(DWP;n = 29)成人群体唾液中的口腔微生物组进行微生物分子分析:结果表明:与健康组相比,DWP 的菌属分布显示,固缩菌和放线菌的含量明显较低,而镰刀菌和螺旋体的含量较高。在检测到的微生物物种中,约有 10%在 DWP、DWoP 和 NP 样本中的定植频率和水平存在显著差异。一部分细菌与临床疾病特征以及唾液分析物的特定种类有明显的相关性,特别是基质金属蛋白酶(MMP)8/MMP9、白细胞介素-1ß、B 细胞活化因子和抵抗素在不同组间存在差异,并与特定的类群有关。主成分分析结果表明,在唾液样本中检测到的多达 255 个分类群中,有 27 个分类群在 DWP 受试者微生物组中占多数:结论:与糖尿病患者或无牙周炎的非糖尿病患者相比,患有牙周炎的 T2DM 患者显示出独特的口腔微生物组和唾液分析物组成。口腔微生物组的特定成员与 T2DM 患者的临床疾病特征和/或唾液生物大分子直接相关。
{"title":"Salivary microbiome and biomarker characteristics of diabetics with periodontitis.","authors":"Jeffrey L Ebersole, Sreenatha S Kirakodu, Xiahou Zhang, Dolph Dawson, Craig S Miller","doi":"10.1111/omi.12485","DOIUrl":"10.1111/omi.12485","url":null,"abstract":"<p><strong>Objective: </strong>To examine the characteristics of the salivary microbiome in Type 2 diabetes mellitus (T2DM) patients with or without periodontitis.</p><p><strong>Background: </strong>Periodontitis has been identified as clear sequelae of T2DM. This chronic oral disease also impacts the management of the clinical features of diabetes. The oral microbiome characteristics in T2DM with and without periodontitis, as well as the response of this oral microbiome to nonsurgical therapy have not been well described. Knowledge of key oral biological features could help address the observed poorer clinical presentation of T2DM patients.</p><p><strong>Methods: </strong>The oral microbiome in saliva of adult cohorts periodontally healthy/non-diabetic (non-periodontitis; NP; n = 31), T2DM without periodontitis (DWoP; n = 32), and T2DM with periodontitis (DWP; n = 29) were characterized by microbial molecular analysis using V3-V4 sequencing and Luminex or ELISA techniques for salivary host analytes.</p><p><strong>Results: </strong>Phyla distribution showed DWP with significantly lower levels of Firmicutes and Actinobacteria and higher levels of Fusobacteria and Spirochetes compared to the healthier groups. Approximately 10% of the detected microbial species showed significant differences in frequency and level of colonization among the DWP, DWoP, and NP samples. A subset of bacteria were significantly correlated with clinical disease features, as well as a specific repertoire of salivary analytes, in particular matrix metalloproteinase (MMP)8/MMP9, interleukin-1ß, B-cell activating factor, and resistin differed between the groups and were related to specific taxa. Principal component analysis that identified a majority of the DWP subjects microbiome was unique based upon an array of 27 taxa out of up to 255 detected in the saliva samples.</p><p><strong>Conclusion: </strong>T2DM patients with periodontitis show unique oral microbiome and salivary analyte composition compared to diabetics or non-diabetic persons without periodontitis. Specific members of the oral microbiome relate directly to the clinical disease features and/or salivary biomolecules in T2DM individuals.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"37-49"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Teeth to Body: The Complex Role of Streptococcus mutans in Systemic Diseases.
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-01-27 DOI: 10.1111/omi.12491
Haowen Xiao, Yuqing Li

Streptococcus mutans, the principal pathogen associated with dental caries, impacts individuals across all age groups and geographic regions. Beyond its role in compromising oral health, a growing body of research has established a link between S. mutans and various systemic diseases, including immunoglobulin A nephropathy (IgAN), nonalcoholic steatohepatitis (NASH), infective endocarditis (IE), ulcerative colitis (UC), cerebral hemorrhage, and tumors. The pathogenic mechanisms associated with S. mutans frequently involve collagen-binding proteins (CBPs) and protein antigens (PA) present on the bacterial surface. These components facilitate intricate interactions with the host immune system, thereby potentially contributing to various pathological processes. Specifically, CBP is implicated in the deposition of IgA and complement component C3, which exhibits characteristics reminiscent of IgAN-like lesions through animal models, recent clinical studies suggest a potential involvement of S. mutans in IgAN. In addition, CBP binds to complement component C1q, effectively inhibiting the classical activation pathway of the complement system. In addition, CBP promotes the induction of host cells to produce interferon-gamma (IFN-γ). Furthermore, CBP leads to direct inhibitory effects on platelets and the activation of matrix metalloproteinase-9 (MMP-9) at sites of vascular injury. Moreover, PA enhances the ability of S. mutans to invade hepatic tissue. Through utilization of its PAc, S. mutans excessively produces kynurenine (KYNA), which promotes the development and progression of oral squamous cell carcinoma (OSCC). This article synthesizes the latest advancements in understanding the mechanisms of intricate interactions between S. mutans and various systemic conditions in humans, expanding our perspective beyond the traditional focus on dental caries.

{"title":"From Teeth to Body: The Complex Role of Streptococcus mutans in Systemic Diseases.","authors":"Haowen Xiao, Yuqing Li","doi":"10.1111/omi.12491","DOIUrl":"https://doi.org/10.1111/omi.12491","url":null,"abstract":"<p><p>Streptococcus mutans, the principal pathogen associated with dental caries, impacts individuals across all age groups and geographic regions. Beyond its role in compromising oral health, a growing body of research has established a link between S. mutans and various systemic diseases, including immunoglobulin A nephropathy (IgAN), nonalcoholic steatohepatitis (NASH), infective endocarditis (IE), ulcerative colitis (UC), cerebral hemorrhage, and tumors. The pathogenic mechanisms associated with S. mutans frequently involve collagen-binding proteins (CBPs) and protein antigens (PA) present on the bacterial surface. These components facilitate intricate interactions with the host immune system, thereby potentially contributing to various pathological processes. Specifically, CBP is implicated in the deposition of IgA and complement component C3, which exhibits characteristics reminiscent of IgAN-like lesions through animal models, recent clinical studies suggest a potential involvement of S. mutans in IgAN. In addition, CBP binds to complement component C1q, effectively inhibiting the classical activation pathway of the complement system. In addition, CBP promotes the induction of host cells to produce interferon-gamma (IFN-γ). Furthermore, CBP leads to direct inhibitory effects on platelets and the activation of matrix metalloproteinase-9 (MMP-9) at sites of vascular injury. Moreover, PA enhances the ability of S. mutans to invade hepatic tissue. Through utilization of its PAc, S. mutans excessively produces kynurenine (KYNA), which promotes the development and progression of oral squamous cell carcinoma (OSCC). This article synthesizes the latest advancements in understanding the mechanisms of intricate interactions between S. mutans and various systemic conditions in humans, expanding our perspective beyond the traditional focus on dental caries.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Amyloid-β Peptides in Gingival Crevicular Fluid and Its Effect on Oral Pathogens. 龈沟液中淀粉样蛋白-β肽的检测及其对口腔病原菌的影响。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-12 DOI: 10.1111/omi.12488
Yue Liao, Hui-Wen Chen, Che Qiu, Hui Shen, Zhi-Yan He, Zhong-Chen Song, Wei Zhou

Periodontitis is the most common oral inflammatory disease, contributing to the onset and progression of Alzheimer's disease. However, a full investigation has not been performed on the expression level of amyloid-β (Aβ) peptides in gingival crevicular fluid (GCF) and its effects on oral pathogens. This study aimed to analyze the expression level of Aβ peptides in GCF of patients with periodontitis and the effects of Aβ peptides against common oral pathogens. GCF samples were collected from patients with periodontitis (n = 15) and periodontally healthy people (n = 10). The antimicrobial effects of Aβ peptides were evaluated on four common oral pathogenic strains using an MTT assay, crystal violet staining, fluorescence microscope, and transmission electron microscope. The protein levels of Aβ40 and Aβ42 were upregulated in the GCF of periodontitis group compared with the healthy group. Both Aβ40 and Aβ42 exhibited antimicrobial effects on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Lactobacillus acidophilus in both planktonic and biofilm conditions. Further, only Aβ40 showed an antimicrobial effect on the Fusobacterium nucleatum. The results of this study demonstrate that Aβ peptides in GCF may be a relevant indicator of periodontitis status. Besides, the antimicrobial peptides derived from Aβ peptides have great potential in periodontal therapy.

牙周炎是最常见的口腔炎症性疾病,有助于阿尔茨海默病的发生和发展。然而,尚未对龈沟液(GCF)中淀粉样蛋白-β (a β)肽的表达水平及其对口腔病原体的影响进行充分的研究。本研究旨在分析牙周炎患者GCF中Aβ肽的表达水平及其对口腔常见病原菌的作用。收集牙周炎患者(n = 15)和牙周健康人群(n = 10)的GCF样本。采用MTT法、结晶紫染色法、荧光显微镜和透射电镜观察Aβ肽对4种常见口腔病原菌的抑菌效果。牙周炎组GCF中Aβ40和Aβ42蛋白水平较健康组上调。在浮游和生物膜条件下,Aβ40和Aβ42对牙龈卟啉单胞菌、放线菌聚集菌和嗜酸乳杆菌均有抗菌作用。此外,只有Aβ40对核梭杆菌有抗菌作用。本研究结果表明,GCF中的a β肽可能是牙周炎状态的相关指标。此外,由Aβ肽衍生的抗菌肽在牙周治疗中具有很大的潜力。
{"title":"Detection of Amyloid-β Peptides in Gingival Crevicular Fluid and Its Effect on Oral Pathogens.","authors":"Yue Liao, Hui-Wen Chen, Che Qiu, Hui Shen, Zhi-Yan He, Zhong-Chen Song, Wei Zhou","doi":"10.1111/omi.12488","DOIUrl":"https://doi.org/10.1111/omi.12488","url":null,"abstract":"<p><p>Periodontitis is the most common oral inflammatory disease, contributing to the onset and progression of Alzheimer's disease. However, a full investigation has not been performed on the expression level of amyloid-β (Aβ) peptides in gingival crevicular fluid (GCF) and its effects on oral pathogens. This study aimed to analyze the expression level of Aβ peptides in GCF of patients with periodontitis and the effects of Aβ peptides against common oral pathogens. GCF samples were collected from patients with periodontitis (n = 15) and periodontally healthy people (n = 10). The antimicrobial effects of Aβ peptides were evaluated on four common oral pathogenic strains using an MTT assay, crystal violet staining, fluorescence microscope, and transmission electron microscope. The protein levels of Aβ40 and Aβ42 were upregulated in the GCF of periodontitis group compared with the healthy group. Both Aβ40 and Aβ42 exhibited antimicrobial effects on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Lactobacillus acidophilus in both planktonic and biofilm conditions. Further, only Aβ40 showed an antimicrobial effect on the Fusobacterium nucleatum. The results of this study demonstrate that Aβ peptides in GCF may be a relevant indicator of periodontitis status. Besides, the antimicrobial peptides derived from Aβ peptides have great potential in periodontal therapy.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding Adenine DNA Methylation Effects in Streptococcus Mutans: Insights Into Self-DNA Protection and Autoaggregation. 解码变形链球菌的腺嘌呤DNA甲基化效应:对自我DNA保护和自聚集的见解。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-03 DOI: 10.1111/omi.12489
Haowei Zhao, Delphine Dufour, Jamie Zhong, Siew-Ging Gong, Paul H Roy, Céline M Lévesque

Streptococcus mutans, a key player in dental caries, faces multiple environmental challenges within the oral cavity, including oxidative stress, nutrient scarcity, and acidic pH. To survive and thrive, S. mutans has evolved intricate mechanisms, including the CSP-ComDE quorum sensing system, which coordinates responses to environmental cues. The CSP-ComDE system enables S. mutans to communicate with neighboring cells via its CSP pheromone. Under stress conditions, the CSP pheromone production increases, triggering a cascade of events. Notably, our research demonstrated that the CSP pheromone activates the expression of a Type II restriction-modification (R-M) system. Type II R-M systems are well-known tools in molecular biology and genetic engineering and consist of two distinct enzymes: a restriction enzyme and a methyltransferase. An increasing number of studies have revealed that bacterial adenine methylation (Dam methylation) has a broader role beyond mere DNA protection. In fact, the marks introduced into the DNA provide signals for a variety of physiological processes. Our results highlight a conserved chromosomal locus in S. mutans encoding the DpnII R-M system. DpnII R-M methylates DNA at 5'-GATC target sites within the S. mutans genome and cleaves unmarked DNA. Furthermore, our findings suggest that Dam methylation significantly impacts foreign DNA acquisition via natural transformation and modulates mutanobactin expression-a secondary metabolite linked to oxidative stress tolerance. Collectively, our findings suggest that Dam methylation bridges epigenetics and bacterial fitness, potentially opening new avenues in bacterial epigenetics. As we explore this intricate biological process, we may uncover novel therapeutic strategies to combat bacterial infections.

变形链球菌(Streptococcus mutans)是导致龋齿的关键因素,它在口腔内面临多种环境挑战,包括氧化应激、营养缺乏和酸性ph。为了生存和繁衍,变形链球菌进化出了复杂的机制,包括CSP-ComDE群体感应系统,该系统协调对环境信号的反应。CSP- comde系统使变形链球菌能够通过其CSP信息素与邻近细胞进行通信。在压力条件下,CSP信息素的产生增加,引发一系列事件。值得注意的是,我们的研究表明,CSP信息素激活了II型限制性修饰(R-M)系统的表达。II型R-M系统是分子生物学和基因工程中众所周知的工具,由两种不同的酶组成:限制性内切酶和甲基转移酶。越来越多的研究表明,细菌腺嘌呤甲基化(Dam甲基化)具有更广泛的作用,而不仅仅是DNA保护。事实上,引入DNA的标记为各种生理过程提供了信号。我们的研究结果突出了突变链球菌编码DpnII R-M系统的保守染色体位点。DpnII R-M甲基化S. mutans基因组中5'-GATC靶点上的DNA,并切割未标记的DNA。此外,我们的研究结果表明,Dam甲基化通过自然转化显著影响外源DNA的获取,并调节mutanobactin的表达——一种与氧化应激耐受性相关的次级代谢物。总的来说,我们的研究结果表明,Dam甲基化连接了表观遗传学和细菌适应性,可能为细菌表观遗传学开辟了新的途径。当我们探索这个复杂的生物学过程时,我们可能会发现新的治疗策略来对抗细菌感染。
{"title":"Decoding Adenine DNA Methylation Effects in Streptococcus Mutans: Insights Into Self-DNA Protection and Autoaggregation.","authors":"Haowei Zhao, Delphine Dufour, Jamie Zhong, Siew-Ging Gong, Paul H Roy, Céline M Lévesque","doi":"10.1111/omi.12489","DOIUrl":"https://doi.org/10.1111/omi.12489","url":null,"abstract":"<p><p>Streptococcus mutans, a key player in dental caries, faces multiple environmental challenges within the oral cavity, including oxidative stress, nutrient scarcity, and acidic pH. To survive and thrive, S. mutans has evolved intricate mechanisms, including the CSP-ComDE quorum sensing system, which coordinates responses to environmental cues. The CSP-ComDE system enables S. mutans to communicate with neighboring cells via its CSP pheromone. Under stress conditions, the CSP pheromone production increases, triggering a cascade of events. Notably, our research demonstrated that the CSP pheromone activates the expression of a Type II restriction-modification (R-M) system. Type II R-M systems are well-known tools in molecular biology and genetic engineering and consist of two distinct enzymes: a restriction enzyme and a methyltransferase. An increasing number of studies have revealed that bacterial adenine methylation (Dam methylation) has a broader role beyond mere DNA protection. In fact, the marks introduced into the DNA provide signals for a variety of physiological processes. Our results highlight a conserved chromosomal locus in S. mutans encoding the DpnII R-M system. DpnII R-M methylates DNA at 5'-GATC target sites within the S. mutans genome and cleaves unmarked DNA. Furthermore, our findings suggest that Dam methylation significantly impacts foreign DNA acquisition via natural transformation and modulates mutanobactin expression-a secondary metabolite linked to oxidative stress tolerance. Collectively, our findings suggest that Dam methylation bridges epigenetics and bacterial fitness, potentially opening new avenues in bacterial epigenetics. As we explore this intricate biological process, we may uncover novel therapeutic strategies to combat bacterial infections.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis. PG1037 参与修复牙龈卟啉单胞菌氧化应激引起的 8-氧代-7,8-二氢鸟嘌呤。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI: 10.1111/omi.12482
Yuetan Dou, Arunima Mishra, Hansel M Fletcher

Background: The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H2O2)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis.

Materials and methods: PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG.

Results: The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins.

Conclusions: Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.

背景:PG1037 基因是牙龈卟啉单胞菌中 uvrA-PG1037-pcrA 操作子的一部分。它编码一种在过氧化氢(H2O2)诱导的氧化应激下上调的未知功能蛋白质。生物信息学分析表明,PG1037 具有一个锌指基团、两个过氧化物酶基团和一个细胞苷酸激酶结构域。本研究的目的是进一步确定 PG1037 重组蛋白在牙龈脓肿独特的 8-oxoG 修复系统中的作用:材料: 制作了锌指或过氧化物酶基序缺失的 PG1037 重组蛋白。电泳迁移试验用于评估重组蛋白结合含 8-oxoG 寡核苷酸的能力。锌结合、过氧化物酶和芬顿反应试验用于评估 rPG1037 蛋白的功能作用。利用细菌腺苷酸环化酶双臂试验确定了 PG1037 在修复 8-oxoG 过程中的伙伴蛋白:结果:带有 N 端 His 标记的重组 PG1037(rPG1037)蛋白具有识别和结合含 8-oxoG 寡核苷酸的能力。与野生型 rPG1037 蛋白相反,锌指基序缺失导致锌和 8-oxoG 结合活性丧失。过氧化物酶基序-1的缺失导致过氧化物酶活性降低。利用细菌腺苷酸环化酶双杂交系统,没有观察到 PG1037 与 UvrA (PG1036)、PcrA (PG1038) 或错配修复系统蛋白之间的蛋白质相互作用:综上所述,研究结果表明,PG1037 是牙龈脓疱菌识别和修复氧化应激诱导的 DNA 损伤的新型机制的重要成员。
{"title":"Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis.","authors":"Yuetan Dou, Arunima Mishra, Hansel M Fletcher","doi":"10.1111/omi.12482","DOIUrl":"10.1111/omi.12482","url":null,"abstract":"<p><strong>Background: </strong>The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis.</p><p><strong>Materials and methods: </strong>PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG.</p><p><strong>Results: </strong>The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins.</p><p><strong>Conclusions: </strong>Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"507-520"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. 核酸镰刀菌在癌症中的作用及其对临床应用的影响。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-07-11 DOI: 10.1111/omi.12475
Wanyi Luo, Juxi Han, Xian Peng, Xuedong Zhou, Tao Gong, Xin Zheng

Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.

核团镰刀菌是一种革兰氏阴性厌氧菌,大量存在于人类口腔中,因其显著的聚集能力而被广泛认为是导致牙周疾病发生和发展的关键病原菌。大量临床研究表明,核酸酵母菌与各种恶性肿瘤的不良预后有关。在进一步的研究中,学者们部分阐明了 F. nucleatum 对各种癌症的影响机制,从而对 F. nucleatum 在癌症中扮演的角色有了一定的了解。在这篇综合综述中,我们深入综述了 F. nucleatum 与不同癌症之间的相互作用,重点关注肿瘤的诱发、转移、化疗耐药性以及肿瘤免疫微环境的调节和免疫治疗等方面。此外,还总结了其对癌症诊断和治疗的影响。本综述旨在加深我们对 F. nucleatum 与致癌致病之间错综复杂关系的理解,同时强调潜在的治疗策略。
{"title":"The role of Fusobacterium nucleatum in cancer and its implications for clinical applications.","authors":"Wanyi Luo, Juxi Han, Xian Peng, Xuedong Zhou, Tao Gong, Xin Zheng","doi":"10.1111/omi.12475","DOIUrl":"10.1111/omi.12475","url":null,"abstract":"<p><p>Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"417-432"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Oral Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1