Santiago Veiga, Claudia Braun, Xiao Qiu, Jelena Stosic, Stefan Fuhrmann, Armin Kibele, Sebastian Fischer
{"title":"What makes a successful relay start in swimming?","authors":"Santiago Veiga, Claudia Braun, Xiao Qiu, Jelena Stosic, Stefan Fuhrmann, Armin Kibele, Sebastian Fischer","doi":"10.1080/14763141.2024.2303787","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the mechanical advantage of preparatory movements on the starting block, current evidence questions the start improvements of competitive swimmers with their relay techniques. Therefore, the aim of the present study was to analyse the kinetic and kinematic parameters of a successful relay start. Twenty national- and international-level swimmers performed several relay starts (<i>n</i> = 145) with their preferred technique (short or long-step start) over an instrumented OBS11 starting platform. Trials were classified as successful or non-successful depending on the 10-m times being faster or slower than their individual start. Linear Mixed Models outlined that successful relay starts were characterised (all <i>p</i> < 0.05) by a later (0.04 s) onset of the leg step, a lower (18%) horizontal force during the leg step, and a later (0.03 s) positioning of the hands at the lowest point of the upper-limb backswing. In addition, greater values for the maximal horizontal (12%) and vertical (9%) forces and faster horizontal (4%) and resultant (3%) velocities were detected when driving off the block. These characteristics were also dependent on the relay technique. Unlike individual track starts, swimmers with fast relay starts employed longer preparatory movements on the block to maximise the time of force application and thus the impulse.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"3442-3453"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2303787","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the mechanical advantage of preparatory movements on the starting block, current evidence questions the start improvements of competitive swimmers with their relay techniques. Therefore, the aim of the present study was to analyse the kinetic and kinematic parameters of a successful relay start. Twenty national- and international-level swimmers performed several relay starts (n = 145) with their preferred technique (short or long-step start) over an instrumented OBS11 starting platform. Trials were classified as successful or non-successful depending on the 10-m times being faster or slower than their individual start. Linear Mixed Models outlined that successful relay starts were characterised (all p < 0.05) by a later (0.04 s) onset of the leg step, a lower (18%) horizontal force during the leg step, and a later (0.03 s) positioning of the hands at the lowest point of the upper-limb backswing. In addition, greater values for the maximal horizontal (12%) and vertical (9%) forces and faster horizontal (4%) and resultant (3%) velocities were detected when driving off the block. These characteristics were also dependent on the relay technique. Unlike individual track starts, swimmers with fast relay starts employed longer preparatory movements on the block to maximise the time of force application and thus the impulse.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.