Manman Chang, Ying Sun, Kangzhi Fang, Maoyin Fu, Jingyu Ma, Yang Gao, Qi Chen, Linlin Liu, Zhaoliang Zhang, Xiaochun Wan, Jun Sun
{"title":"CsMYB73 negatively regulates theanine accumulation mediated by CsGGT2 and CsGGT4 in tea shoots (Camellia sinensis)","authors":"Manman Chang, Ying Sun, Kangzhi Fang, Maoyin Fu, Jingyu Ma, Yang Gao, Qi Chen, Linlin Liu, Zhaoliang Zhang, Xiaochun Wan, Jun Sun","doi":"10.1093/hr/uhae012","DOIUrl":null,"url":null,"abstract":"Theanine metabolism is a necessary biological process during the planting and production of tea that determines tea quality. There is currently little knowledge about the transcriptional regulation of theanine metabolism in tea plants. This study, we demonstrated that γ-glutamyl-transpeptidase CsGGT4, as a homologous protein of the theanine hydrolase CsGGT2, exhibited a higher theanine synthesis catalytic efficiency. Homology modeling and molecular docking showed that differential protein structures between CsGGT2 and CsGGT4 implied their different biological functions in tea plants. Theanine content correlated significantly with the expression of CsGGT2, CsGGT4 and the transcription factor CsMYB73 in tea shoots from different seasons. Additionally, CsMYB73 was confirmed to act as a nucleus-localized transcription factor (TF), directly interacts with the CsGGT2 and CsGGT4 promoters, serving as an activator of CsGGT2 and a suppressor of CsGGT4. Consequently, this leads to a negative association with theanine accumulation in tea shoots. Furthermore, the continuous increase in CsMYB73 produced a significantly increase in CsGGT2 expression and inhibited CsGGT4 expression. The present study reveals that the degradation of theanine has been observed to increase, concomitantly with the inhibition of theanine synthesis, resulting in a significant decline in the accumulation of theanine in tea shoots during the process of seasonal greening in 'Huangkui' leaves. This study contributes to the broader comprehension of the intricate transcriptional regulatory hierarchy that governs the metabolism of theanine in tea shoots, offering novel approaches for managing tea plantations and enhancing tea quality.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"19 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae012","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Theanine metabolism is a necessary biological process during the planting and production of tea that determines tea quality. There is currently little knowledge about the transcriptional regulation of theanine metabolism in tea plants. This study, we demonstrated that γ-glutamyl-transpeptidase CsGGT4, as a homologous protein of the theanine hydrolase CsGGT2, exhibited a higher theanine synthesis catalytic efficiency. Homology modeling and molecular docking showed that differential protein structures between CsGGT2 and CsGGT4 implied their different biological functions in tea plants. Theanine content correlated significantly with the expression of CsGGT2, CsGGT4 and the transcription factor CsMYB73 in tea shoots from different seasons. Additionally, CsMYB73 was confirmed to act as a nucleus-localized transcription factor (TF), directly interacts with the CsGGT2 and CsGGT4 promoters, serving as an activator of CsGGT2 and a suppressor of CsGGT4. Consequently, this leads to a negative association with theanine accumulation in tea shoots. Furthermore, the continuous increase in CsMYB73 produced a significantly increase in CsGGT2 expression and inhibited CsGGT4 expression. The present study reveals that the degradation of theanine has been observed to increase, concomitantly with the inhibition of theanine synthesis, resulting in a significant decline in the accumulation of theanine in tea shoots during the process of seasonal greening in 'Huangkui' leaves. This study contributes to the broader comprehension of the intricate transcriptional regulatory hierarchy that governs the metabolism of theanine in tea shoots, offering novel approaches for managing tea plantations and enhancing tea quality.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.