Variable selection via penalized quasi-maximum likelihood method for spatial autoregressive model with missing response

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2024-01-08 DOI:10.1016/j.spasta.2023.100809
Yuanfeng Wang, Yunquan Song
{"title":"Variable selection via penalized quasi-maximum likelihood method for spatial autoregressive model with missing response","authors":"Yuanfeng Wang,&nbsp;Yunquan Song","doi":"10.1016/j.spasta.2023.100809","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial autoregressive model is widely concerned in the economic field, whereas when the data is missing, variable selection and parameter estimation of the model is quite challenging. Based on this, we discuss the variable selection in spatial autoregressive model with missing data. Under the condition that errors are independent and identically distributed, we have developed a penalized quasi-maximum likelihood method to achieve variable selection and parameter estimation simultaneously in the presence of missing responses. The method’s theoretical properties, including consistency and asymptotical normality, are established under certain assumptions. Meanwhile, an improved expectation–maximization algorithm is provided for optimizing the penalized quasi-maximum likelihood function. Simulations are conducted to examine the proposed method and assess the finite-sample performance. Additionally, we present a practical example to illustrate the method’s application.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000842/pdfft?md5=559f1254900f3364b51f6f266c8dfb77&pid=1-s2.0-S2211675323000842-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000842","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial autoregressive model is widely concerned in the economic field, whereas when the data is missing, variable selection and parameter estimation of the model is quite challenging. Based on this, we discuss the variable selection in spatial autoregressive model with missing data. Under the condition that errors are independent and identically distributed, we have developed a penalized quasi-maximum likelihood method to achieve variable selection and parameter estimation simultaneously in the presence of missing responses. The method’s theoretical properties, including consistency and asymptotical normality, are established under certain assumptions. Meanwhile, an improved expectation–maximization algorithm is provided for optimizing the penalized quasi-maximum likelihood function. Simulations are conducted to examine the proposed method and assess the finite-sample performance. Additionally, we present a practical example to illustrate the method’s application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过惩罚性准极大似然法为缺失响应的空间自回归模型选择变量
空间自回归模型在经济领域受到广泛关注,而当数据缺失时,模型的变量选择和参数估计就具有相当大的挑战性。基于此,我们讨论了缺失数据空间自回归模型中的变量选择问题。在误差独立且同分布的条件下,我们提出了一种受惩罚的准极大似然法,以在存在缺失响应的情况下同时实现变量选择和参数估计。在一定的假设条件下,建立了该方法的理论特性,包括一致性和渐近正态性。同时,还提供了一种改进的期望最大化算法,用于优化受惩罚的准最大似然函数。我们通过模拟来检验所提出的方法,并评估其有限样本性能。此外,我们还提出了一个实际例子来说明该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1