{"title":"CINE: A 4K-UHD Energy-Efficient Computational Imaging Neural Engine With Overlapped Stripe Inference and Structure-Sparse Kernel","authors":"Kai-Ping Lin;Yu-Chun Ding;Chun-Yeh Lin;Yong-Tai Chen;Chao-Tsung Huang","doi":"10.1109/LSSC.2023.3343913","DOIUrl":null,"url":null,"abstract":"Recently, convolutional neural networks have achieved great success in high-resolution computational imaging (CI) applications, such as super-resolution, image denoising, and image style transfer. However, it demands an enormous number of external memory access, i.e., DRAM bandwidth, and intensive computation while inferencing deeper models for high-quality images. In this letter, an energy-efficient CI neural engine, CINE, is proposed with three key features: 1) overlapped stripe inference flow; 2) structure-sparse convolution kernel; and 3) weight-rotated allocation unit. As a result, CINE can provide 4.6-8.3 TOP/W of energy efficiency for high-quality CI applications.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"26-29"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10363439/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, convolutional neural networks have achieved great success in high-resolution computational imaging (CI) applications, such as super-resolution, image denoising, and image style transfer. However, it demands an enormous number of external memory access, i.e., DRAM bandwidth, and intensive computation while inferencing deeper models for high-quality images. In this letter, an energy-efficient CI neural engine, CINE, is proposed with three key features: 1) overlapped stripe inference flow; 2) structure-sparse convolution kernel; and 3) weight-rotated allocation unit. As a result, CINE can provide 4.6-8.3 TOP/W of energy efficiency for high-quality CI applications.
最近,卷积神经网络在超分辨率、图像去噪和图像风格转换等高分辨率计算成像(CI)应用中取得了巨大成功。然而,它需要大量的外部内存访问(即 DRAM 带宽)和密集的计算,同时还要推断出高质量图像的深度模型。在这封信中,我们提出了一种高能效的 CI 神经引擎 CINE,它有三个主要特点:1) 重叠条纹推理流;2) 结构稀疏卷积核;3) 权重旋转分配单元。因此,CINE 可为高质量 CI 应用提供 4.6-8.3 TOP/W 的能效。