{"title":"Predicting Student Engagement Using Sequential Ensemble Model","authors":"Xinran Tian;Bernardo Pereira Nunes;Yifeng Liu;Ruben Manrique","doi":"10.1109/TLT.2023.3342860","DOIUrl":null,"url":null,"abstract":"Predicting student engagement can provide timely feedback and help teachers make adjustments to their practices to meet student needs and improve their learning experience. This article proposes a four-step approach using a sequential ensemble model for engagement prediction, discusses the contribution of different features to the model and the influence of video segmentation in the prediction, reports on two in-the-wild datasets-The Emotion Recognition in the Wild Engagement Prediction (EmotiW-EP) dataset published in 2018 as part of a student engagement task and the Dataset for Affective States in E-Environments (DAiSEE), a general purpose dataset also used in the educational context but not limited to it, and, finally, presents a comprehensive and thorough critical analysis, highlighting crucial factors to consider when using AI/computer vision models in educational datasets for learning purposes. Experiments show that our proposed approach outperforms state-of-the-art approaches by obtaining a mean square error of 0.0386 on the DAiSEE dataset and 0.0610 on the EmotiW-EP dataset. We conclude this article with a critical analysis of the reliability of such predictions in learning environments and propose future directions for the effective use of AI/computer vision models in education.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"939-950"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10360221/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting student engagement can provide timely feedback and help teachers make adjustments to their practices to meet student needs and improve their learning experience. This article proposes a four-step approach using a sequential ensemble model for engagement prediction, discusses the contribution of different features to the model and the influence of video segmentation in the prediction, reports on two in-the-wild datasets-The Emotion Recognition in the Wild Engagement Prediction (EmotiW-EP) dataset published in 2018 as part of a student engagement task and the Dataset for Affective States in E-Environments (DAiSEE), a general purpose dataset also used in the educational context but not limited to it, and, finally, presents a comprehensive and thorough critical analysis, highlighting crucial factors to consider when using AI/computer vision models in educational datasets for learning purposes. Experiments show that our proposed approach outperforms state-of-the-art approaches by obtaining a mean square error of 0.0386 on the DAiSEE dataset and 0.0610 on the EmotiW-EP dataset. We conclude this article with a critical analysis of the reliability of such predictions in learning environments and propose future directions for the effective use of AI/computer vision models in education.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.