Wenxuan Wang, Ying Bu, Wenzheng Li, Wenhui Zhu, Jianrong Li, Xuepeng Li
{"title":"Effects of nano freezing-thawing on myofibrillar protein of Atlantic salmon fillets: Protein structure and label-free proteomics","authors":"Wenxuan Wang, Ying Bu, Wenzheng Li, Wenhui Zhu, Jianrong Li, Xuepeng Li","doi":"10.1016/j.foodchem.2024.138369","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the impact of magnetic nanoparticles (MNPs) -assisted cryogenic freezing integrated with MNPs combined microwave thawing (NNMT) on the structural integrity of myofibrillar proteins and alterations in protein profiles in salmon fillets. The NNMT showed the lowest myofibrillar fragmentation index (MFI) value (2.73 ± 0.31) among the four freezing-thawing groups. The myofibrillar structure exhibited the highest level of integrity, while the myofibrillar proteins demonstrated minimal aggregation and displayed the most stable secondary and tertiary structures in response to NNMT treatment. Compared with the other three treatments, NNMT exhibited a high abundance of ionic and hydrogen bonds, resulting in stronger interactions between the proteins and water molecules. The label-free proteomics analysis revealed that different freezing-thawing methods primarily affected the cytoskeletal proteins, with collagen and myosin being down-regulated due to degradation caused by cold stress and recrystallization. Additionally, NNMT demonstrated a superior capability in stabilizing salmon cytoskeletal proteins.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624000177","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of magnetic nanoparticles (MNPs) -assisted cryogenic freezing integrated with MNPs combined microwave thawing (NNMT) on the structural integrity of myofibrillar proteins and alterations in protein profiles in salmon fillets. The NNMT showed the lowest myofibrillar fragmentation index (MFI) value (2.73 ± 0.31) among the four freezing-thawing groups. The myofibrillar structure exhibited the highest level of integrity, while the myofibrillar proteins demonstrated minimal aggregation and displayed the most stable secondary and tertiary structures in response to NNMT treatment. Compared with the other three treatments, NNMT exhibited a high abundance of ionic and hydrogen bonds, resulting in stronger interactions between the proteins and water molecules. The label-free proteomics analysis revealed that different freezing-thawing methods primarily affected the cytoskeletal proteins, with collagen and myosin being down-regulated due to degradation caused by cold stress and recrystallization. Additionally, NNMT demonstrated a superior capability in stabilizing salmon cytoskeletal proteins.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.