DIPA2

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631439
Anran Xu, Zhongyi Zhou, Kakeru Miyazaki, Ryo Yoshikawa, S. Hosio, Koji Yatani
{"title":"DIPA2","authors":"Anran Xu, Zhongyi Zhou, Kakeru Miyazaki, Ryo Yoshikawa, S. Hosio, Koji Yatani","doi":"10.1145/3631439","DOIUrl":null,"url":null,"abstract":"The world today is increasingly visual. Many of the most popular online social networking services are largely powered by images, making image privacy protection a critical research topic in the fields of ubiquitous computing, usable security, and human-computer interaction (HCI). One topical issue is understanding privacy-threatening content in images that are shared online. This dataset article introduces DIPA2, an open-sourced image dataset that offers object-level annotations with high-level reasoning properties to show perceptions of privacy among different cultures. DIPA2 provides 5,897 annotations describing perceived privacy risks of 3,347 objects in 1,304 images. The annotations contain the type of the object and four additional privacy metrics: 1) information type indicating what kind of information may leak if the image containing the object is shared, 2) a 7-point Likert item estimating the perceived severity of privacy leakages, and 3) intended recipient scopes when annotators assume they are either image owners or allowing others to repost the image. Our dataset contains unique data from two cultures: We recruited annotators from both Japan and the U.K. to demonstrate the impact of culture on object-level privacy perceptions. In this paper, we first illustrate how we designed and performed the construction of DIPA2, along with data analysis of the collected annotations. Second, we provide two machine-learning baselines to demonstrate how DIPA2 challenges the current image privacy recognition task. DIPA2 facilitates various types of research on image privacy, including machine learning methods inferring privacy threats in complex scenarios, quantitative analysis of cultural influences on privacy preferences, understanding of image sharing behaviors, and promotion of cyber hygiene for general user populations.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The world today is increasingly visual. Many of the most popular online social networking services are largely powered by images, making image privacy protection a critical research topic in the fields of ubiquitous computing, usable security, and human-computer interaction (HCI). One topical issue is understanding privacy-threatening content in images that are shared online. This dataset article introduces DIPA2, an open-sourced image dataset that offers object-level annotations with high-level reasoning properties to show perceptions of privacy among different cultures. DIPA2 provides 5,897 annotations describing perceived privacy risks of 3,347 objects in 1,304 images. The annotations contain the type of the object and four additional privacy metrics: 1) information type indicating what kind of information may leak if the image containing the object is shared, 2) a 7-point Likert item estimating the perceived severity of privacy leakages, and 3) intended recipient scopes when annotators assume they are either image owners or allowing others to repost the image. Our dataset contains unique data from two cultures: We recruited annotators from both Japan and the U.K. to demonstrate the impact of culture on object-level privacy perceptions. In this paper, we first illustrate how we designed and performed the construction of DIPA2, along with data analysis of the collected annotations. Second, we provide two machine-learning baselines to demonstrate how DIPA2 challenges the current image privacy recognition task. DIPA2 facilitates various types of research on image privacy, including machine learning methods inferring privacy threats in complex scenarios, quantitative analysis of cultural influences on privacy preferences, understanding of image sharing behaviors, and promotion of cyber hygiene for general user populations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DIPA2
当今世界越来越视觉化。许多最流行的在线社交网络服务在很大程度上都是由图像驱动的,这使得图像隐私保护成为泛在计算、可用安全和人机交互(HCI)领域的一个重要研究课题。其中一个热点问题是了解在线共享图片中威胁隐私的内容。本数据集文章介绍了 DIPA2,这是一个开源的图像数据集,提供具有高级推理属性的对象级注释,以显示不同文化中对隐私的看法。DIPA2 提供了 5,897 个注释,描述了 1,304 张图片中 3,347 个对象的隐私风险感知。这些注释包含对象类型和四个额外的隐私指标:1)信息类型,表示如果共享包含对象的图片,可能会泄露哪类信息;2)7 点 Likert 项目,估计感知到的隐私泄露严重程度;3)当注释者假定自己是图片所有者或允许他人转贴图片时,预期接收者范围。我们的数据集包含来自两种文化的独特数据:我们招募了来自日本和英国的注释者,以展示文化对对象级隐私感知的影响。在本文中,我们首先说明了如何设计和构建 DIPA2,以及对收集到的注释进行数据分析。其次,我们提供了两个机器学习基线,以展示 DIPA2 如何挑战当前的图像隐私识别任务。DIPA2 有助于各种类型的图像隐私研究,包括在复杂场景中推断隐私威胁的机器学习方法、对隐私偏好的文化影响的定量分析、对图像共享行为的理解,以及促进普通用户群体的网络卫生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare Providers and Older Adults A Digital Companion Architecture for Ambient Intelligence Waving Hand as Infrared Source for Ubiquitous Gas Sensing PPG-Hear: A Practical Eavesdropping Attack with Photoplethysmography Sensors User-directed Assembly Code Transformations Enabling Efficient Batteryless Arduino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1