{"title":"A review: flexible devices for nerve stimulation","authors":"Ze-Qing Liu, Xiang-Yang Yu, Jing Huang, Xin-Yi Wu, Zi-Yu Wang, Ben-Peng Zhu","doi":"10.20517/ss.2023.36","DOIUrl":null,"url":null,"abstract":"Nerve stimulation technology utilizing electricity, magnetism, light, and ultrasound has found extensive applications in biotechnology and medical fields. Neurostimulation devices serve as the crucial interface between biological tissue and the external environment, posing a bottleneck in the advancement of neurostimulation technology. Ensuring safety and stability is essential for their future applications. Traditional rigid devices often elicit significant immune responses due to the mechanical mismatch between their materials and biological tissues. Consequently, there is a growing demand for flexible nerve stimulation devices that offer enhanced treatment efficacy while minimizing irritation to the human body. This review provides a comprehensive summary of the historical development and recent advancements in flexible devices utilizing four neurostimulation techniques: electrical stimulation, magnetic stimulation, optic stimulation, and ultrasonic stimulation. It highlights their potential for high biocompatibility, low power consumption, wireless operation, and superior stability. The aim is to offer valuable insights and guidance for the future development and application of flexible neurostimulation devices.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"2 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nerve stimulation technology utilizing electricity, magnetism, light, and ultrasound has found extensive applications in biotechnology and medical fields. Neurostimulation devices serve as the crucial interface between biological tissue and the external environment, posing a bottleneck in the advancement of neurostimulation technology. Ensuring safety and stability is essential for their future applications. Traditional rigid devices often elicit significant immune responses due to the mechanical mismatch between their materials and biological tissues. Consequently, there is a growing demand for flexible nerve stimulation devices that offer enhanced treatment efficacy while minimizing irritation to the human body. This review provides a comprehensive summary of the historical development and recent advancements in flexible devices utilizing four neurostimulation techniques: electrical stimulation, magnetic stimulation, optic stimulation, and ultrasonic stimulation. It highlights their potential for high biocompatibility, low power consumption, wireless operation, and superior stability. The aim is to offer valuable insights and guidance for the future development and application of flexible neurostimulation devices.