Anomalous Valley Hall Effect in Two-dimensional Valleytronic Materials

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2024-01-09 DOI:10.1088/1674-1056/ad1c59
Hongxin Chen, Xiaobo Yuan, Junfeng Ren
{"title":"Anomalous Valley Hall Effect in Two-dimensional Valleytronic Materials","authors":"Hongxin Chen, Xiaobo Yuan, Junfeng Ren","doi":"10.1088/1674-1056/ad1c59","DOIUrl":null,"url":null,"abstract":"\n The anomalous valley Hall effect (AVHE) can be used to explore and utilize valley degrees of freedom in materials, which has potential applications in fields such as information storage, quantum computing and optoelectronics. AVHE exists in two-dimensional (2D) materials possessing valley polarization (VP), and such 2D materials usually belong to the hexagonal honeycomb lattice. Therefore, it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally. In this topical review, we introduce recent developments on realizing VP as well as AVHE through different methods, i.e., doping transition metal atoms, building ferrovalley heterostructures and searching for ferrovalley materials. Moreover, 2D ferrovalley systems under external modulation are also discussed. 2D valleytronic materials with AVHE demonstrate excellent performance and potential applications, which offer the possibility of realizing novel low-energy-consuming devices, facilitating further development of device technology, realizing miniaturization and enhancing functionality of them.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"26 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad1c59","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The anomalous valley Hall effect (AVHE) can be used to explore and utilize valley degrees of freedom in materials, which has potential applications in fields such as information storage, quantum computing and optoelectronics. AVHE exists in two-dimensional (2D) materials possessing valley polarization (VP), and such 2D materials usually belong to the hexagonal honeycomb lattice. Therefore, it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally. In this topical review, we introduce recent developments on realizing VP as well as AVHE through different methods, i.e., doping transition metal atoms, building ferrovalley heterostructures and searching for ferrovalley materials. Moreover, 2D ferrovalley systems under external modulation are also discussed. 2D valleytronic materials with AVHE demonstrate excellent performance and potential applications, which offer the possibility of realizing novel low-energy-consuming devices, facilitating further development of device technology, realizing miniaturization and enhancing functionality of them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维谷电子材料中的反常谷霍尔效应
反常谷霍尔效应(AVHE)可用于探索和利用材料中的谷自由度,在信息存储、量子计算和光电子学等领域具有潜在的应用价值。谷极霍尔效应存在于具有谷极化(VP)的二维(2D)材料中,这类二维材料通常属于六角蜂窝晶格。因此,有必要实现更易于合成和实验应用的具有 VP 的谷电材料。在这篇专题综述中,我们将介绍通过不同方法实现 VP 和 AVHE 的最新进展,即掺杂过渡金属原子、构建铁谷异质结构和寻找铁谷材料。此外,还讨论了外部调制下的二维铁电体系统。具有 AVHE 的二维峡谷电子材料表现出卓越的性能和潜在的应用前景,为实现新型低能耗器件提供了可能,促进了器件技术的进一步发展,实现了器件的微型化并增强了器件的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1