{"title":"Polaron interfacial entropy as a route to high thermoelectric performance in DAE-doped PEDOT:PSS films","authors":"Jiajia Zhang, Caichao Ye, Genwang Wei, Liang Guo, Yuhang Cai, Zhi Li, Xin-Kun Wu, Fangyi Sun, Qikai Li, Yupeng Wang, Huan Li, Yuchen Li, Shuaihua Wang, Wei Xu, Xuefeng Guo, Wenqing Zhang, Weishu Liu","doi":"10.1093/nsr/nwae009","DOIUrl":null,"url":null,"abstract":"\n Enhancing the thermoelectric (TE) transport properties of conductive polymer materials has been a long-term challenge, in spite of the success seen with molecular doping strategies [1–8]. However, the strong coupling between the thermopower and the electrical conductivity limits the thermoelectric performance. Here, we use polaron interfacial occupied entropy engineering to break through this intercoupling for a PEDOT:PSS (poly(3,4-ethylenedioxythiophene-poly(4-styrenesulfonate)) thin film by using photochromic diarylethene (DAE) dopants coupled with UV-light modulation. With a 10-fold enhancement of the thermopower from 13.5 μV K−1 to 135.4 μV K−1 and almost unchanged electrical conductivity, the DAE-doped PEDOT: PSS thin film achieved an extremely high power factor of 521.28 μW m−1 K−2 from an original value of 6.78 μW m−1 K−2. The thermopower was positively correlated with the UV light intensity but decreased with increasing temperature, indicating resonant coupling between the planar closed DAE molecule and PEDOT. Both the experiments and theoretical calculations consistently confirmed the formation of an interface state due to this resonant coupling Interfacial entropy engineering of polarons could play a critical role in enhancing the thermoelectric performance of the organic film.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"52 48","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae009","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the thermoelectric (TE) transport properties of conductive polymer materials has been a long-term challenge, in spite of the success seen with molecular doping strategies [1–8]. However, the strong coupling between the thermopower and the electrical conductivity limits the thermoelectric performance. Here, we use polaron interfacial occupied entropy engineering to break through this intercoupling for a PEDOT:PSS (poly(3,4-ethylenedioxythiophene-poly(4-styrenesulfonate)) thin film by using photochromic diarylethene (DAE) dopants coupled with UV-light modulation. With a 10-fold enhancement of the thermopower from 13.5 μV K−1 to 135.4 μV K−1 and almost unchanged electrical conductivity, the DAE-doped PEDOT: PSS thin film achieved an extremely high power factor of 521.28 μW m−1 K−2 from an original value of 6.78 μW m−1 K−2. The thermopower was positively correlated with the UV light intensity but decreased with increasing temperature, indicating resonant coupling between the planar closed DAE molecule and PEDOT. Both the experiments and theoretical calculations consistently confirmed the formation of an interface state due to this resonant coupling Interfacial entropy engineering of polarons could play a critical role in enhancing the thermoelectric performance of the organic film.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.