Development of Manufacturing Process for High-Chromium Steel Large Welding Roll

Q4 Physics and Astronomy Defect and Diffusion Forum Pub Date : 2024-01-09 DOI:10.4028/p-s55ows
Volodymyr V. Kukhar, Oleg Vasylevskyi, Khrystyna Malii, Vadim Zurnadzhy, Bohdan Efremenko, Ivan Sili
{"title":"Development of Manufacturing Process for High-Chromium Steel Large Welding Roll","authors":"Volodymyr V. Kukhar, Oleg Vasylevskyi, Khrystyna Malii, Vadim Zurnadzhy, Bohdan Efremenko, Ivan Sili","doi":"10.4028/p-s55ows","DOIUrl":null,"url":null,"abstract":"Due to the operating conditions of weld and calibrating rolls used in the production processes of large electric-welded pipes, their material is subject to stringent wear and abrasion resistance requirements at high temperatures. The limited capabilities of conventional Cr-Mn-Ni tool steels and open die forging technologies with heat treatment processes do not provide the required performance properties for large welded rolls. Therefore, the material of the product was replaced with Cr12MoV high-chromium steel. This required identifying the formation patterns of the fine grain structure of high-chromium steel in order to adjust the production technology with adaptation to the unique conditions and equipment (12.5 MN hydraulic forging press, heating and thermal furnaces) of the forging shop. The technology was offered, which included the development of modes from heating to heat treatment with intermediate two-stage forging from Cr12MoV steel ingots in two sets of combined dies. At the first stage, deformation with a low reduction ratio ε = 5% and a relative feed rate of 0.4 per pass was provided to break and refine the carbide mesh, and at the second stage, intense deformation with a reduction ratio ε = 15% was performed. Further practical application has shown that the durability of weld rolls made from the new material increases by 20–30%.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-s55ows","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the operating conditions of weld and calibrating rolls used in the production processes of large electric-welded pipes, their material is subject to stringent wear and abrasion resistance requirements at high temperatures. The limited capabilities of conventional Cr-Mn-Ni tool steels and open die forging technologies with heat treatment processes do not provide the required performance properties for large welded rolls. Therefore, the material of the product was replaced with Cr12MoV high-chromium steel. This required identifying the formation patterns of the fine grain structure of high-chromium steel in order to adjust the production technology with adaptation to the unique conditions and equipment (12.5 MN hydraulic forging press, heating and thermal furnaces) of the forging shop. The technology was offered, which included the development of modes from heating to heat treatment with intermediate two-stage forging from Cr12MoV steel ingots in two sets of combined dies. At the first stage, deformation with a low reduction ratio ε = 5% and a relative feed rate of 0.4 per pass was provided to break and refine the carbide mesh, and at the second stage, intense deformation with a reduction ratio ε = 15% was performed. Further practical application has shown that the durability of weld rolls made from the new material increases by 20–30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高铬钢大型焊接辊制造工艺的开发
由于大型电焊管生产过程中使用的焊接辊和校准辊的工作条件,其材料在高温下需要满足严格的磨损和耐磨要求。传统的铬锰镍工具钢和热处理工艺的开放式模锻技术能力有限,无法提供大型焊接辊所需的性能特性。因此,该产品的材料被替换为 Cr12MoV 高铬钢。这就需要确定高铬钢细晶粒结构的形成模式,以调整生产技术,适应锻造车间的独特条件和设备(12.5 MN 液压锻造压力机、加热炉和热处理炉)。提供的技术包括开发从加热到热处理的模式,以及在两套组合模具中对 Cr12MoV 钢锭进行中间两阶段锻造。在第一阶段,以低缩减率 ε = 5%和每道 0.4 的相对进给率进行变形,以破碎和细化碳化物网;在第二阶段,以缩减率 ε = 15%进行强烈变形。进一步的实际应用表明,由新材料制成的焊接辊的耐用性提高了 20-30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Selected Mechanical Properties of Concrete with Regard to the Type of Steel Fibers Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial Rheological Properties and Segregation of Fresh UHPC with Fibers Affected by Initial Temperature of Concrete Mix Mechanical Properties of Luffa Fiber Reinforced Recycled Polymer Composite Advanced Materials and Technologies in Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1