{"title":"Effect of the Non-Linear Radiative Unsteady Mixed Convective Flow over a Curved Stretching Surface with Soret and Dufour Effects: A Numerical Study","authors":"Temjennaro Jamir, H. Konwar","doi":"10.4028/p-8dz1ax","DOIUrl":null,"url":null,"abstract":"The subject of unsteady convective flow with non-linear thermal radiation has become an important issue of research, due to its implications in advanced energy conversion systems operating at high temperature, solar energy technology and chemical process at high operation temperature. Due to the importance of this issue, a time dependent incompressible viscous fluid flow, heat and mass transfer over a curved stretching surface has been numerically analysed by taking into account the heat flux due to concentration gradient and mass flux due to temperature gradient. Together with this the Rosseland approximation is being employed for the nonlinear thermal radiation impact in presence of thermal slip. With the aid of non-dimensional variables and the corresponding physical boundary conditions, the leading nonlinear momentum, energy, and species equations are converted into a set of coupled ordinary differential equations. These equations are then resolved using the MATLAB bvp4c solver. The stability of the numerical technique has been verified and compared with available literatures. The resultant parameters of engineering interest and the boundary layer flow field parameters and have been presented using tables and graphically plots. The study concludes that for lesser curvature parameter (0.5≤K≤0.7) the surface drag force, heat and mass transfer rates can improve by about 9.59%, 2.87% and 1.67% each respectively. The presence of the temperature ratio parameter and the non-linear thermal radiation are found to greatly influence the temperature profile and the heat transfer rate of the system. Results show that the heat transfer rate improves by about 24.39% and 16.66% for varying non-linear thermal radiation (1≤Rd≤1.5) and temperature ratio parameter (1.2≤θw≤1.4) respectively. Results obtained also show that improving the thermal slip parameter (0.4≤L≤0.6) can reduce heat transfer rate by about 13.62% and reduce the surface temperature profile.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-8dz1ax","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The subject of unsteady convective flow with non-linear thermal radiation has become an important issue of research, due to its implications in advanced energy conversion systems operating at high temperature, solar energy technology and chemical process at high operation temperature. Due to the importance of this issue, a time dependent incompressible viscous fluid flow, heat and mass transfer over a curved stretching surface has been numerically analysed by taking into account the heat flux due to concentration gradient and mass flux due to temperature gradient. Together with this the Rosseland approximation is being employed for the nonlinear thermal radiation impact in presence of thermal slip. With the aid of non-dimensional variables and the corresponding physical boundary conditions, the leading nonlinear momentum, energy, and species equations are converted into a set of coupled ordinary differential equations. These equations are then resolved using the MATLAB bvp4c solver. The stability of the numerical technique has been verified and compared with available literatures. The resultant parameters of engineering interest and the boundary layer flow field parameters and have been presented using tables and graphically plots. The study concludes that for lesser curvature parameter (0.5≤K≤0.7) the surface drag force, heat and mass transfer rates can improve by about 9.59%, 2.87% and 1.67% each respectively. The presence of the temperature ratio parameter and the non-linear thermal radiation are found to greatly influence the temperature profile and the heat transfer rate of the system. Results show that the heat transfer rate improves by about 24.39% and 16.66% for varying non-linear thermal radiation (1≤Rd≤1.5) and temperature ratio parameter (1.2≤θw≤1.4) respectively. Results obtained also show that improving the thermal slip parameter (0.4≤L≤0.6) can reduce heat transfer rate by about 13.62% and reduce the surface temperature profile.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.