{"title":"Elastohydrodynamic Rotational Lubrication Analysis on the Multi-Body Dynamic Properties of Journal-Bearing Systems","authors":"Yunn Lin Hwang, Adhitya Adhitya","doi":"10.4028/p-ptk9sd","DOIUrl":null,"url":null,"abstract":"This research aims to investigate the properties of elastohydrodynamic rotational lubrication analysis on journal-bearing systems. To simulate elastohydrodynamic lubrication on journal-bearing systems, the Elasto-Hydro-Dynamic (EHD) solver is combined with the Multi-Body Dynamic (MBD) solver to create MBD virtual environment with lubricant. The hydrodynamic lubricant is governed by using the Reynolds equation, whereas the elastic contact is governed using Greenwood and Tripp theories. The simulation is performed by changing the operating conditions such as the speed, load, and clearance between two surfaces. One can find these parameters’ effects such as film thickness, hydrodynamic pressure, and friction. The result shows that the friction induced by shaft speed is similar to the Stribeck curve on mixed lubrication regime. Consequently, the clearance, speed, and load will not only affect the friction but also affect the hydrodynamic pressure and film thickness.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ptk9sd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to investigate the properties of elastohydrodynamic rotational lubrication analysis on journal-bearing systems. To simulate elastohydrodynamic lubrication on journal-bearing systems, the Elasto-Hydro-Dynamic (EHD) solver is combined with the Multi-Body Dynamic (MBD) solver to create MBD virtual environment with lubricant. The hydrodynamic lubricant is governed by using the Reynolds equation, whereas the elastic contact is governed using Greenwood and Tripp theories. The simulation is performed by changing the operating conditions such as the speed, load, and clearance between two surfaces. One can find these parameters’ effects such as film thickness, hydrodynamic pressure, and friction. The result shows that the friction induced by shaft speed is similar to the Stribeck curve on mixed lubrication regime. Consequently, the clearance, speed, and load will not only affect the friction but also affect the hydrodynamic pressure and film thickness.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.