Application and analysis of superconducting magnetic eddy current heater used in wind thermal power generation system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-08 DOI:10.1049/elp2.12416
Wenfeng Zhang, Chen Chen, Zeyuan Liu, Youhua Wang, Chengcheng Liu
{"title":"Application and analysis of superconducting magnetic eddy current heater used in wind thermal power generation system","authors":"Wenfeng Zhang,&nbsp;Chen Chen,&nbsp;Zeyuan Liu,&nbsp;Youhua Wang,&nbsp;Chengcheng Liu","doi":"10.1049/elp2.12416","DOIUrl":null,"url":null,"abstract":"<p>In order to cope with the grid fluctuation caused by large-scale wind power connected to the grid, the wind thermal power generation system has been proposed and extensively studied. The wind thermal power generation system uses a wind turbine to drive a heat generation device to heat the heat storage medium, which is further exchanged to drive a turbine to generate electricity. A superconducting magnetic eddy current heater (SMH) is proposed for the characteristics of wind thermal power generation system, which uses non-resistive, large current-carrying superconducting coils for excitation, and has high output efficiency and power density. The working principle of magnetic eddy current heating is analysed, and the structure of SMH with no ferromagnetic material and two heating screens inside and outside is proposed according to the characteristics of SMH. An analytical model of the SMH is established, and the influence of the structure and materials of the SMH on the magnetic field distribution is analysed. Based on this, a 22-pole SMH was designed and analysed for output power at 10–20 rpm. A three-dimensional magnetism-stress combined analysis model of SMH is established, and the strain and stress characteristics of SMH are simulated under the condition of maximum output power, which verifies the feasibility of the mechanical properties of existing superconducting materials for application in SMH.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12416","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12416","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to cope with the grid fluctuation caused by large-scale wind power connected to the grid, the wind thermal power generation system has been proposed and extensively studied. The wind thermal power generation system uses a wind turbine to drive a heat generation device to heat the heat storage medium, which is further exchanged to drive a turbine to generate electricity. A superconducting magnetic eddy current heater (SMH) is proposed for the characteristics of wind thermal power generation system, which uses non-resistive, large current-carrying superconducting coils for excitation, and has high output efficiency and power density. The working principle of magnetic eddy current heating is analysed, and the structure of SMH with no ferromagnetic material and two heating screens inside and outside is proposed according to the characteristics of SMH. An analytical model of the SMH is established, and the influence of the structure and materials of the SMH on the magnetic field distribution is analysed. Based on this, a 22-pole SMH was designed and analysed for output power at 10–20 rpm. A three-dimensional magnetism-stress combined analysis model of SMH is established, and the strain and stress characteristics of SMH are simulated under the condition of maximum output power, which verifies the feasibility of the mechanical properties of existing superconducting materials for application in SMH.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风力热发电系统中使用的超导磁涡流加热器的应用与分析
为了应对大规模风电并网引起的电网波动,人们提出并广泛研究了风力热发电系统。风力热发电系统利用风力涡轮机驱动发热装置加热蓄热介质,再通过热交换驱动涡轮机发电。针对风力热发电系统的特点,提出了一种超导磁涡流加热器(SMH),它采用无阻抗、大载流量的超导线圈进行励磁,具有较高的输出效率和功率密度。分析了磁涡流加热的工作原理,并根据 SMH 的特点提出了无铁磁材料、内外两层加热屏的 SMH 结构。建立了 SMH 的分析模型,分析了 SMH 的结构和材料对磁场分布的影响。在此基础上,设计了 22 极 SMH,并分析了其在 10-20 rpm 转速下的输出功率。建立了 SMH 的三维磁应力组合分析模型,模拟了 SMH 在最大输出功率条件下的应变和应力特性,验证了现有超导材料的机械性能在 SMH 中应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1