Thermal analysis and temperature evaluation on a magnetic-geared dual-rotor machine

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-08 DOI:10.1049/elp2.12414
Minghao Tong, Xiaoqiang Liu, Le Sun
{"title":"Thermal analysis and temperature evaluation on a magnetic-geared dual-rotor machine","authors":"Minghao Tong,&nbsp;Xiaoqiang Liu,&nbsp;Le Sun","doi":"10.1049/elp2.12414","DOIUrl":null,"url":null,"abstract":"<p>The thermal performance of the magnetic-geared dual-rotor machine (MGDRM) is investigated. Because the effective component in the outer airgap magnetic field harmonics is low, the torque production of MGDRM cannot match the regular permanent magnetic synchronous machine (PMSM). Although the analysis shows that the torque generation of the MGDRM is weak, this conclusion is limited in the electromagnetic field. The MGDRM outer rotor should also be considered from the thermal aspect, and the effect on the torque generation should be valued in particular. The outer rotor thermal buffer effect blocks the heating flow from the winding to the inner rotor magnets. Thus, the MGDRM can withstand a heavy electrical load in a short period, producing higher torque. With this understanding, the torque production ability of the MGDRM can extend to a higher level, even close to the regular PMSM. To validate the analysis, a MGDRM machine is prototyped, and the dual-rotor temperature information acquisition is realised by a wireless data collection. The rotor temperature estimation technology on the dual-rotor is then investigated as an auxiliary function. The estimation error can be limited around 5°C, which is good for warning the thermal risk. And thus the MGDRM overheating can be safely adopted to extend the torque generation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12414","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal performance of the magnetic-geared dual-rotor machine (MGDRM) is investigated. Because the effective component in the outer airgap magnetic field harmonics is low, the torque production of MGDRM cannot match the regular permanent magnetic synchronous machine (PMSM). Although the analysis shows that the torque generation of the MGDRM is weak, this conclusion is limited in the electromagnetic field. The MGDRM outer rotor should also be considered from the thermal aspect, and the effect on the torque generation should be valued in particular. The outer rotor thermal buffer effect blocks the heating flow from the winding to the inner rotor magnets. Thus, the MGDRM can withstand a heavy electrical load in a short period, producing higher torque. With this understanding, the torque production ability of the MGDRM can extend to a higher level, even close to the regular PMSM. To validate the analysis, a MGDRM machine is prototyped, and the dual-rotor temperature information acquisition is realised by a wireless data collection. The rotor temperature estimation technology on the dual-rotor is then investigated as an auxiliary function. The estimation error can be limited around 5°C, which is good for warning the thermal risk. And thus the MGDRM overheating can be safely adopted to extend the torque generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁齿轮双转子机器的热分析和温度评估
本文研究了磁齿轮双转子机器(MGDRM)的热性能。由于外气隙磁场谐波中的有效分量较低,MGDRM 的扭矩产生无法与普通永磁同步电机(PMSM)相提并论。虽然分析表明 MGDRM 产生的转矩较弱,但这一结论在电磁场中是有局限性的。还应从热方面考虑 MGDRM 外转子,并特别重视其对扭矩产生的影响。外转子的热缓冲效应可阻止从绕组流向内转子磁体的热流。因此,MGDRM 可以在短时间内承受较重的电负荷,产生较大的扭矩。有了这种认识,MGDRM 的转矩产生能力就能达到更高水平,甚至接近普通 PMSM。为了验证上述分析,我们制作了一台 MGDRM 原型机,并通过无线数据采集实现了双转子温度信息采集。然后将双转子温度估算技术作为辅助功能进行研究。估算误差可控制在 5°C 左右,这对预警热风险是有利的。因此,可以安全地采用 MGDRM 过热技术来延长扭矩产生时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1