An adaptive weighted ensemble learning network for diabetic retinopathy classification

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2024-01-06 DOI:10.3233/xst-230252
Panpan Wu, Yue Qu, Ziping Zhao, Yue Cui, Yurou Xu, Peng An, Hengyong Yu
{"title":"An adaptive weighted ensemble learning network for diabetic retinopathy classification","authors":"Panpan Wu, Yue Qu, Ziping Zhao, Yue Cui, Yurou Xu, Peng An, Hengyong Yu","doi":"10.3233/xst-230252","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is one of the leading causes of blindness. However, because the data distribution of classes is not always balanced, it is challenging for automated early DR detection using deep learning techniques. In this paper, we propose an adaptive weighted ensemble learning method for DR detection based on optical coherence tomography (OCT) images. Specifically, we develop an ensemble learning model based on three advanced deep learning models for higher performance. To better utilize the cues implied in these base models, a novel decision fusion scheme is proposed based on the Bayesian theory in terms of the key evaluation indicators, to dynamically adjust the weighting distribution of base models to alleviate the negative effects potentially caused by the problem of unbalanced data size. Extensive experiments are performed on two public datasets to verify the effectiveness of the proposed method. A quadratic weighted kappa of 0.8487 and an accuracy of 0.9343 on the DRAC2022 dataset, and a quadratic weighted kappa of 0.9007 and an accuracy of 0.8956 on the APTOS2019 dataset are obtained, respectively. The results demonstrate that our method has the ability to enhance the ovearall performance of DR detection on OCT images.","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"58 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/xst-230252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic retinopathy (DR) is one of the leading causes of blindness. However, because the data distribution of classes is not always balanced, it is challenging for automated early DR detection using deep learning techniques. In this paper, we propose an adaptive weighted ensemble learning method for DR detection based on optical coherence tomography (OCT) images. Specifically, we develop an ensemble learning model based on three advanced deep learning models for higher performance. To better utilize the cues implied in these base models, a novel decision fusion scheme is proposed based on the Bayesian theory in terms of the key evaluation indicators, to dynamically adjust the weighting distribution of base models to alleviate the negative effects potentially caused by the problem of unbalanced data size. Extensive experiments are performed on two public datasets to verify the effectiveness of the proposed method. A quadratic weighted kappa of 0.8487 and an accuracy of 0.9343 on the DRAC2022 dataset, and a quadratic weighted kappa of 0.9007 and an accuracy of 0.8956 on the APTOS2019 dataset are obtained, respectively. The results demonstrate that our method has the ability to enhance the ovearall performance of DR detection on OCT images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于糖尿病视网膜病变分类的自适应加权集合学习网络
糖尿病视网膜病变(DR)是导致失明的主要原因之一。然而,由于类的数据分布并不总是平衡的,因此使用深度学习技术自动进行早期 DR 检测具有挑战性。在本文中,我们提出了一种基于光学相干断层扫描(OCT)图像的自适应加权集合学习方法,用于 DR 检测。具体来说,我们开发了一种基于三种高级深度学习模型的集合学习模型,以获得更高的性能。为了更好地利用这些基础模型中隐含的线索,我们提出了一种基于贝叶斯理论的关键评价指标的新型决策融合方案,以动态调整基础模型的权重分布,从而减轻数据量不平衡问题可能带来的负面影响。为了验证所提方法的有效性,我们在两个公共数据集上进行了大量实验。在 DRAC2022 数据集上得到的二次加权 kappa 分别为 0.8487 和 0.9343,在 APTOS2019 数据集上得到的二次加权 kappa 分别为 0.9007 和 0.8956。这些结果表明,我们的方法有能力提高 OCT 图像 DR 检测的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Industrial digital radiographic image denoising based on improved KBNet. Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction. A fully linearized ADMM algorithm for optimization based image reconstruction. A reconstruction method for ptychography based on residual dense network. Can AI generate diagnostic reports for radiologist approval on CXR images? A multi-reader and multi-case observer performance study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1