Background: Recent studies have explored layered correction strategies, employing a slice-by-slice approach to mitigate the prominent limited-view artifacts present in reconstructed images from high-pitch helical CT scans. However, challenges persist in determining the angles, quantity, and sequencing of slices.
Objective: This study aims to explore the optimal slicing method for high pitch helical scanning 3D reconstruction. We investigate the impact of slicing angle, quantity, order, and model on correction effectiveness, aiming to offer valuable insights for the clinical application of deep learning methods.
Methods: In this study, we constructed and developed a series of data-driven slice correction strategies for 3D high pitch helical CT images using slice theory, and conducted extensive experiments by adjusting the order, increasing the number, and replacing the model.
Results: The experimental results indicate that indiscriminately augmenting the number of correction directions does not significantly enhance the quality of 3D reconstruction. Instead, optimal reconstruction outcomes are attained by aligning the final corrected slice direction with the observation direction.
Conclusions: The data-driven slicing correction strategy can effectively solve the problem of artifacts in high pitch helical scanning. Increasing the number of slices does not significantly improve the quality of the reconstruction results, ensuring that the final correction angle is consistent with the observation angle to achieve the best reconstruction quality.