Removal of Aromatic Amino-derivatives from Aqueous Solutions Using Polymeric Supports Functionalized with Aminophosphonated/aminoacid-phosphonated Groups

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiale Plastice Pub Date : 2024-01-05 DOI:10.37358/mp.23.4.5685
R. Ardelean, Adriana Popa, Ecaterina-Stela Dragan, C. Davidescu
{"title":"Removal of Aromatic Amino-derivatives from Aqueous Solutions Using Polymeric Supports Functionalized with Aminophosphonated/aminoacid-phosphonated Groups","authors":"R. Ardelean, Adriana Popa, Ecaterina-Stela Dragan, C. Davidescu","doi":"10.37358/mp.23.4.5685","DOIUrl":null,"url":null,"abstract":"\nAromatic amines are the significant compounds used as intermediates in the organic synthesis, for obtaining such as azo dyes, antioxidants, fuel additives, corrosion inhibitors, pesticides, antiseptic agents, poultry medicine, and pharmaceutical synthesis. However, the presence of aromatic amines in water, even at very low concentrations, is extremely harmful to aquatic life and human health. Pollution of natural waters by aromatic amines is a serious environmental concern. The aim of this work was to obtain new adsorbents for use in the removal of aromatic amines from aqueous solutions. Styrene-15%divinylbenzene copolymers grafted with aminophosphonate groups (code: AP-S15%DVB) and amino acid-phosphonate groups (code: AM-S15%DVB) were used for the removal of pollutants such as: aniline, 2-methyl-aniline and 4-methyl-aniline. The adsorption capacity and the adsorption kinetic using the pseudo-first order and pseudo-second order equations were examined. From a kinetic point of view, it was established that the adsorption of the studied amino derivatives on the used adsorbents took place according to the pseudo-second order model. It was found that the adsorption rate constant increased with the increase of temperature, so the speed of the adsorption process increased. The obtained results confirm that the polymer adsorbents studied can be successfully used for the removal of aromatic amino derivatives from aqueous solutions for the purpose of wastewater treatment.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.23.4.5685","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic amines are the significant compounds used as intermediates in the organic synthesis, for obtaining such as azo dyes, antioxidants, fuel additives, corrosion inhibitors, pesticides, antiseptic agents, poultry medicine, and pharmaceutical synthesis. However, the presence of aromatic amines in water, even at very low concentrations, is extremely harmful to aquatic life and human health. Pollution of natural waters by aromatic amines is a serious environmental concern. The aim of this work was to obtain new adsorbents for use in the removal of aromatic amines from aqueous solutions. Styrene-15%divinylbenzene copolymers grafted with aminophosphonate groups (code: AP-S15%DVB) and amino acid-phosphonate groups (code: AM-S15%DVB) were used for the removal of pollutants such as: aniline, 2-methyl-aniline and 4-methyl-aniline. The adsorption capacity and the adsorption kinetic using the pseudo-first order and pseudo-second order equations were examined. From a kinetic point of view, it was established that the adsorption of the studied amino derivatives on the used adsorbents took place according to the pseudo-second order model. It was found that the adsorption rate constant increased with the increase of temperature, so the speed of the adsorption process increased. The obtained results confirm that the polymer adsorbents studied can be successfully used for the removal of aromatic amino derivatives from aqueous solutions for the purpose of wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用氨基膦酸化/氨基酸膦酸化基团官能化的聚合物载体去除水溶液中的芳香族氨基衍生物
芳香胺是有机合成中用作中间体的重要化合物,可用于制造偶氮染料、抗氧化剂、燃料添加剂、缓蚀剂、杀虫剂、防腐剂、家禽药品和药物合成。然而,水中的芳香胺即使浓度很低,也会对水生生物和人类健康造成极大危害。芳香胺对天然水体的污染是一个严重的环境问题。这项工作的目的是获得新的吸附剂,用于去除水溶液中的芳香胺。苯乙烯-15%二乙烯基苯共聚物接枝了氨基膦酸盐基团(代码:AP-S15%DVB)和氨基酸膦酸盐基团(代码:AM-S15%DVB),用于去除苯胺、2-甲基苯胺和 4-甲基苯胺等污染物。使用伪一阶和伪二阶方程考察了吸附容量和吸附动力学。从动力学角度来看,所研究的氨基衍生物在所用吸附剂上的吸附作用是按照假二阶模型进行的。研究发现,吸附速率常数随着温度的升高而增加,因此吸附过程的速度也随之加快。所得结果证实,所研究的聚合物吸附剂可成功用于去除水溶液中的芳香族氨基衍生物,从而达到废水处理的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materiale Plastice
Materiale Plastice MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
25.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest. The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.
期刊最新文献
Experimental Analysis of Hyperelastic Materials Using the Vibration Method Impact of Aligned Carbon Nanotubes on the Mechanical Properties and Sensing Performance of EVA/CNTs Composites Influence of Biphasic Calcium Phosphate Incorporation Into Alginate Matrices In vitro Comparison of the Efficiency of Celluloid and Metallic Matrices in Proximal Restorations with a Bulk Polymer-based Biomaterial The Influence of the Delamination Location on the Bending Behavior of E-Glass Fiber EWR Flat Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1