{"title":"A Forest Fire Recognition Method Based on Modified Deep CNN Model","authors":"Shaoxiong Zheng, Xiangjun Zou, Peng Gao, Qin Zhang, Fei Hu, Yufei Zhou, Zepeng Wu, Weixing Wang, Shihong Chen","doi":"10.3390/f15010111","DOIUrl":null,"url":null,"abstract":"Controlling and extinguishing spreading forest fires is a challenging task that often leads to irreversible losses. Moreover, large-scale forest fires generate smoke and dust, causing environmental pollution and posing potential threats to human life. In this study, we introduce a modified deep convolutional neural network model (MDCNN) designed for the recognition and localization of fire in video imagery, employing a deep learning-based recognition approach. We apply transfer learning to refine the model and adapt it for the specific task of fire image recognition. To combat the issue of imprecise detection of flame characteristics, which are prone to misidentification, we integrate a deep CNN with an original feature fusion algorithm. We compile a diverse set of fire and non-fire scenarios to construct a training dataset of flame images, which is then employed to calibrate the model for enhanced flame detection accuracy. The proposed MDCNN model demonstrates a low false alarm rate of 0.563%, a false positive rate of 12.7%, a false negative rate of 5.3%, and a recall rate of 95.4%, and achieves an overall accuracy of 95.8%. The experimental results demonstrate that this method significantly improves the accuracy of flame recognition. The achieved recognition results indicate the model’s strong generalization ability.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"66 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010111","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling and extinguishing spreading forest fires is a challenging task that often leads to irreversible losses. Moreover, large-scale forest fires generate smoke and dust, causing environmental pollution and posing potential threats to human life. In this study, we introduce a modified deep convolutional neural network model (MDCNN) designed for the recognition and localization of fire in video imagery, employing a deep learning-based recognition approach. We apply transfer learning to refine the model and adapt it for the specific task of fire image recognition. To combat the issue of imprecise detection of flame characteristics, which are prone to misidentification, we integrate a deep CNN with an original feature fusion algorithm. We compile a diverse set of fire and non-fire scenarios to construct a training dataset of flame images, which is then employed to calibrate the model for enhanced flame detection accuracy. The proposed MDCNN model demonstrates a low false alarm rate of 0.563%, a false positive rate of 12.7%, a false negative rate of 5.3%, and a recall rate of 95.4%, and achieves an overall accuracy of 95.8%. The experimental results demonstrate that this method significantly improves the accuracy of flame recognition. The achieved recognition results indicate the model’s strong generalization ability.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.