Assessment of toxicity of residues of normal/green cracker and their impact on soil

Darpan Dubey, Awadhesh Kumar Rai
{"title":"Assessment of toxicity of residues of normal/green cracker and their impact on soil","authors":"Darpan Dubey, Awadhesh Kumar Rai","doi":"10.2351/7.0001266","DOIUrl":null,"url":null,"abstract":"In the present work, laser-induced breakdown spectroscopy (LIBS) is used to examine the hazardous constituents present in the residues of six types of normal and six types of green firecracker samples. The residue of the normal firecracker’s samples contains the spectral lines of toxic chemicals such as Al, Ba, Sr, Mg, and Ti in a similar way as the fresh powder of normal crackers. The residues of the green firecracker’s samples contain toxic elements such as Al and Ba, and the intensities of these toxic elements are so high that these samples also contain the electronic bands of AlO and SrO. The UV-vis spectra of residues of normal and green firecracker samples contain the molecules of KNO3, CaO, Al2O3, and SrO in a similar way as the fresh powder of these firecrackers does. This reflects that the toxicity of the powder of firecracker samples remains similar after the burning of these firecrackers’ samples. Therefore, these toxic residues are mixed in the soil, where they burn and contaminate it. For the assessment of the contamination of the soil, the concentration of micronutrients such as Fe, Cu, Mn, Zn, and P is calculated using atomic absorption spectroscopy (AAS) techniques and found to increase in all the contaminated soil compared to blank soil. This reflects that the soil is contaminated. For the classification of the residues and soil contaminated with residues, the principal component analysis (PCA) and hierarchical clustering analysis (HCA) are applied to the LIBS data set.","PeriodicalId":508142,"journal":{"name":"Journal of Laser Applications","volume":"31 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, laser-induced breakdown spectroscopy (LIBS) is used to examine the hazardous constituents present in the residues of six types of normal and six types of green firecracker samples. The residue of the normal firecracker’s samples contains the spectral lines of toxic chemicals such as Al, Ba, Sr, Mg, and Ti in a similar way as the fresh powder of normal crackers. The residues of the green firecracker’s samples contain toxic elements such as Al and Ba, and the intensities of these toxic elements are so high that these samples also contain the electronic bands of AlO and SrO. The UV-vis spectra of residues of normal and green firecracker samples contain the molecules of KNO3, CaO, Al2O3, and SrO in a similar way as the fresh powder of these firecrackers does. This reflects that the toxicity of the powder of firecracker samples remains similar after the burning of these firecrackers’ samples. Therefore, these toxic residues are mixed in the soil, where they burn and contaminate it. For the assessment of the contamination of the soil, the concentration of micronutrients such as Fe, Cu, Mn, Zn, and P is calculated using atomic absorption spectroscopy (AAS) techniques and found to increase in all the contaminated soil compared to blank soil. This reflects that the soil is contaminated. For the classification of the residues and soil contaminated with residues, the principal component analysis (PCA) and hierarchical clustering analysis (HCA) are applied to the LIBS data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估普通/绿色饼干残留物的毒性及其对土壤的影响
本研究采用激光诱导击穿光谱法(LIBS)来检测六种普通爆竹和六种绿色爆竹样品残留物中的有害成分。普通爆竹样品残留物中含有 Al、Ba、Sr、Mg 和 Ti 等有毒化学物质的光谱线,与普通爆竹的新鲜粉末相似。绿色爆竹残留样品中含有 Al 和 Ba 等有毒元素,而且这些有毒元素的强度非常高,以至于这些样品还含有 AlO 和 SrO 的电子带。普通爆竹样品和绿色爆竹样品残留物的紫外可见光谱中含有 KNO3、CaO、Al2O3 和 SrO 分子,与这些爆竹的新鲜粉末相似。这反映出爆竹样品燃烧后,其粉末的毒性仍然相似。因此,这些有毒残留物混合在土壤中,燃烧后污染了土壤。为了评估土壤的污染情况,我们使用原子吸收光谱(AAS)技术计算了铁、铜、锰、锌和磷等微量营养元素的浓度,发现与空白土壤相比,所有受污染土壤中的微量营养元素浓度都有所增加。这反映出土壤受到了污染。为了对残留物和受残留物污染的土壤进行分类,对 LIBS 数据集采用了主成分分析 (PCA) 和分层聚类分析 (HCA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of surface roughness on the microstructure and mechanical properties of dissimilar sapphire/Invar36 alloy joints made by ultrashort pulsed laser micro-welding Microstructure and properties of SLMed Ta-10W and rolled Ta-10W fiber laser welded joint Spatial-temporal characteristics analysis of laser-induced shockwave pressure by reverse optimization with multi-island genetic algorithm Effect of brazing process on microstructure evolution and mechanical properties of Ti6Al4V/ZrO2 joints after laser surface treatment New method for high-efficiency keyhole-based wire direct energy deposition: Process innovation and characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1