{"title":"New method for high-efficiency keyhole-based wire direct energy deposition: Process innovation and characterization","authors":"Rongshi Xiao, Shihui Guo, Min Zheng, Baoqi Zhu, Qiang Wu, Jiejie Xu, Ting-Yun Huang","doi":"10.2351/7.0001388","DOIUrl":null,"url":null,"abstract":"Wire laser direct energy deposition enables the mass production of large-scale industrial components and parts. However, energy utilization efficiency is limited in conventional wire laser material deposition to avoid keyhole defects, resulting in a low deposition efficiency. This work presents a high-efficiency wire laser material deposition process that increases energy utilization by generating a keyhole in the filler wire, which can also avoid the keyhole defects in the deposited sample. The influence of process parameters on deposition quality and efficiency was thoroughly examined to determine the process window. A high deposition efficiency of 0.87 kg/(h kW) for 316L stainless steel was achieved with a laser power of 3 kW, approximately three times that of the conventional wire laser material deposition process. The defect-free multitrack and multilayer deposition demonstrated the feasibility of our proposed high-efficiency process.","PeriodicalId":508142,"journal":{"name":"Journal of Laser Applications","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wire laser direct energy deposition enables the mass production of large-scale industrial components and parts. However, energy utilization efficiency is limited in conventional wire laser material deposition to avoid keyhole defects, resulting in a low deposition efficiency. This work presents a high-efficiency wire laser material deposition process that increases energy utilization by generating a keyhole in the filler wire, which can also avoid the keyhole defects in the deposited sample. The influence of process parameters on deposition quality and efficiency was thoroughly examined to determine the process window. A high deposition efficiency of 0.87 kg/(h kW) for 316L stainless steel was achieved with a laser power of 3 kW, approximately three times that of the conventional wire laser material deposition process. The defect-free multitrack and multilayer deposition demonstrated the feasibility of our proposed high-efficiency process.