Numerical Study of the Influence of the Type of Gas on Drag Reduction by Microbubble Injection

Haigang An, Po Yang, Hanyu Zhang, Xinquan Liu
{"title":"Numerical Study of the Influence of the Type of Gas on Drag Reduction by Microbubble Injection","authors":"Haigang An, Po Yang, Hanyu Zhang, Xinquan Liu","doi":"10.3390/inventions9010007","DOIUrl":null,"url":null,"abstract":"In this work, a novel numerical method for studying the influence of gas types on drag reduction by microbubble injection is presented. Aimed at the microbubble drag reduction (MBDR) process for different types of gases, the mass transfer velocity of different types of gases in the gas–liquid phase is defined by writing a user-defined function (UDF), which reflected the influence of gas solubility on the drag reduction rate. An Eulerian multiphase flow model and the Realizable k−ε turbulence model are used for numerical calculation. The population balance model is used to describe the coalescence and breakup phenomena of the microbubble groups. Henry’s theorem is used to calculate the equilibrium concentration of the microbubble mixed flow. The interphase mass transfer rate of the microbubble injection process for different types of gases is studied by using permeation theory. The local mass fraction of the mixed flow is solved by the component transport equation. It is found that the larger the solubility of the gas, the lower the efficiency of MBDR. When the volume flow rate of the same type of gas is the same but the injection speed is different, the larger the solubility of the gas is, the greater the difference in the drag reduction ratio.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a novel numerical method for studying the influence of gas types on drag reduction by microbubble injection is presented. Aimed at the microbubble drag reduction (MBDR) process for different types of gases, the mass transfer velocity of different types of gases in the gas–liquid phase is defined by writing a user-defined function (UDF), which reflected the influence of gas solubility on the drag reduction rate. An Eulerian multiphase flow model and the Realizable k−ε turbulence model are used for numerical calculation. The population balance model is used to describe the coalescence and breakup phenomena of the microbubble groups. Henry’s theorem is used to calculate the equilibrium concentration of the microbubble mixed flow. The interphase mass transfer rate of the microbubble injection process for different types of gases is studied by using permeation theory. The local mass fraction of the mixed flow is solved by the component transport equation. It is found that the larger the solubility of the gas, the lower the efficiency of MBDR. When the volume flow rate of the same type of gas is the same but the injection speed is different, the larger the solubility of the gas is, the greater the difference in the drag reduction ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微气泡喷射对气体类型对减少阻力影响的数值研究
本研究提出了一种新型数值方法,用于研究气体类型对微气泡注入降低阻力的影响。针对不同类型气体的微气泡减阻(MBDR)过程,通过编写用户自定义函数(UDF)定义了气液相中不同类型气体的传质速度,反映了气体溶解度对减阻速率的影响。数值计算采用欧拉多相流模型和可实现 k-ε 湍流模型。种群平衡模型用于描述微气泡群的凝聚和破裂现象。亨利定理用于计算微气泡混合流的平衡浓度。利用渗透理论研究了不同类型气体在微气泡注入过程中的相间传质速率。混合流的局部质量分数由组分传输方程求解。研究发现,气体的溶解度越大,MBDR 的效率越低。当同一种气体的体积流量相同但注入速度不同时,气体的溶解度越大,阻力减小率的差异就越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances and Challenges in Emerging Power Systems Temperature-Dependent Residual Stresses and Thermal Expansion Coefficient of VO2 Thin Films Systematic Opportunity Scan of Energy Recovery Technologies Applied to Trucks with Electric Refrigerated Units Experimental Research on an Afterburner System Fueled with Hydrogen–Methane Mixtures A Novel Hybrid Ultrasound Abrasive-Driven Electrochemical Surface Finishing Technique for Additively Manufactured Ti6Al4V Parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1