Pub Date : 2024-05-23DOI: 10.3390/inventions9030062
O. Malik
Diminishing fossil fuels, the continually increasing demand for energy due to rapid urbanization, pollution caused by the increased generation of electricity using fossil fuels, the consequent environmental effect, and concerns about man-made global warming have prompted a call for renewable energy solutions [...]
{"title":"Recent Advances and Challenges in Emerging Power Systems","authors":"O. Malik","doi":"10.3390/inventions9030062","DOIUrl":"https://doi.org/10.3390/inventions9030062","url":null,"abstract":"Diminishing fossil fuels, the continually increasing demand for energy due to rapid urbanization, pollution caused by the increased generation of electricity using fossil fuels, the consequent environmental effect, and concerns about man-made global warming have prompted a call for renewable energy solutions [...]","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"26 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.3390/inventions9030061
C. Tien, Chun-Yu Chiang, Ching-Chiun Wang, Shih-Chin Lin
This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2) thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods, the thermal–mechanical behavior of and thermal stresses in VO2 films can be determined. An improved Twyman–Green interferometer was used to measure the temperature-dependent residual stress variations of VO2 thin films at different temperatures. This study found that the substrate has a great impact on thermal stress, which is mainly caused by the mismatch in the coefficient of thermal expansion (CTE) of the film and the substrate. By using the dual-substrate method, thermal stresses in VO2 thin films from room temperature to 120 °C can be evaluated. The thermal expansion coefficient is 3.21 × 10−5 °C−1, and the biaxial modulus is 517 GPa.
{"title":"Temperature-Dependent Residual Stresses and Thermal Expansion Coefficient of VO2 Thin Films","authors":"C. Tien, Chun-Yu Chiang, Ching-Chiun Wang, Shih-Chin Lin","doi":"10.3390/inventions9030061","DOIUrl":"https://doi.org/10.3390/inventions9030061","url":null,"abstract":"This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2) thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods, the thermal–mechanical behavior of and thermal stresses in VO2 films can be determined. An improved Twyman–Green interferometer was used to measure the temperature-dependent residual stress variations of VO2 thin films at different temperatures. This study found that the substrate has a great impact on thermal stress, which is mainly caused by the mismatch in the coefficient of thermal expansion (CTE) of the film and the substrate. By using the dual-substrate method, thermal stresses in VO2 thin films from room temperature to 120 °C can be evaluated. The thermal expansion coefficient is 3.21 × 10−5 °C−1, and the biaxial modulus is 517 GPa.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"122 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141125071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3390/inventions9030058
Á. C. de Carvalho, Matheus H.R. Miranda, Ludmila C. A. Silva, F. Silva, Rafael Rogora Kawano, J. J. Eckert, F. Dedini
This article presents an original research methodology that combines insights from patents and academic research, offering a unique perspective on energy recovery technologies for trucks equipped with refrigeration units. The purpose of the study is to perform a functional analysis of existing solutions and to suggest a mechanism for exposing unexplored areas and opportunities for innovation. To achieve this goal, a systematic opportunity scan is presented, investigating patents and conducting a state-of-the-art search of existing technologies. This scan classifies a diverse range of solutions, elucidating their interconnections and providing an overview of the existing technological area, covering system components and technical trends. Thus, the main functions and components are listed, as well as the system requirements. Once the functions have been surveyed, a morphological matrix is proposed, and five main functions are analyzed. This methodology makes it possible to list the majority of the possible solutions for the functions analyzed, taking into account the components observed in the literature review and patents, including new components raised by the research group. Finally, with the morphological matrix structure, it was possible to combine unexplored elements, achieving innovative solutions.
{"title":"Systematic Opportunity Scan of Energy Recovery Technologies Applied to Trucks with Electric Refrigerated Units","authors":"Á. C. de Carvalho, Matheus H.R. Miranda, Ludmila C. A. Silva, F. Silva, Rafael Rogora Kawano, J. J. Eckert, F. Dedini","doi":"10.3390/inventions9030058","DOIUrl":"https://doi.org/10.3390/inventions9030058","url":null,"abstract":"This article presents an original research methodology that combines insights from patents and academic research, offering a unique perspective on energy recovery technologies for trucks equipped with refrigeration units. The purpose of the study is to perform a functional analysis of existing solutions and to suggest a mechanism for exposing unexplored areas and opportunities for innovation. To achieve this goal, a systematic opportunity scan is presented, investigating patents and conducting a state-of-the-art search of existing technologies. This scan classifies a diverse range of solutions, elucidating their interconnections and providing an overview of the existing technological area, covering system components and technical trends. Thus, the main functions and components are listed, as well as the system requirements. Once the functions have been surveyed, a morphological matrix is proposed, and five main functions are analyzed. This methodology makes it possible to list the majority of the possible solutions for the functions analyzed, taking into account the components observed in the literature review and patents, including new components raised by the research group. Finally, with the morphological matrix structure, it was possible to combine unexplored elements, achieving innovative solutions.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141128150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/inventions9030046
F. Florean, A. Mangra, Marius Enache, Marius Deaconu, Razvan Ciobanu, R. Carlanescu
A new afterburner installation is proposed, fueled with pure hydrogen (100%H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4) for use in cogeneration applications. Two prototypes (P1 and P2) with the same expansion angle (45 degrees) were developed and tested. P1 was manufactured by the classic method and P2 by additive manufacturing. Both prototypes were manufactured from Inconel 625. During the tests, analysis of flue gas (CO2, CO, and NO concentration), PIV measurements, and noise measurements were conducted. The flue gas analysis emphasizes that the behavior of the two tested prototypes was very similar. For all three fuels used, the CO2 concentration levels were slightly lower in the case of the additive-manufactured prototype P2. The CO concentration levels were significantly higher in the case of the additive-manufactured prototype P2 when 60% H2/40% CH4 and 80% H2/20% CH4 mixtures were used as fuel. When pure H2 was used as fuel, the measured data suggest that no additional CO was produced during the combustion process, and the level of CO was similar to that from the Garrett micro gas turbine in all five measuring points. The NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO concentration was significantly lower in the case of the additive-manufactured prototype (P2) in comparison with the classic manufactured prototype (P1). Examining the data obtained from the PIV measurements of the flow within the mixing region shows that the highest axial velocity component value on the centerline was measured for the P1 prototype. The acoustic measurements showed that a higher H2 concentration led to a reduction in noise of approximately 1.5 dB for both afterburner prototypes. The outcomes reveal that the examined V-gutter flame holder prototype flow was smooth, without any perpendicular oscillations, without chaotic motions or turbulent oscillations to the flow direction, across all tested conditions, keeping constant thermal power.
{"title":"Experimental Research on an Afterburner System Fueled with Hydrogen–Methane Mixtures","authors":"F. Florean, A. Mangra, Marius Enache, Marius Deaconu, Razvan Ciobanu, R. Carlanescu","doi":"10.3390/inventions9030046","DOIUrl":"https://doi.org/10.3390/inventions9030046","url":null,"abstract":"A new afterburner installation is proposed, fueled with pure hydrogen (100%H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4) for use in cogeneration applications. Two prototypes (P1 and P2) with the same expansion angle (45 degrees) were developed and tested. P1 was manufactured by the classic method and P2 by additive manufacturing. Both prototypes were manufactured from Inconel 625. During the tests, analysis of flue gas (CO2, CO, and NO concentration), PIV measurements, and noise measurements were conducted. The flue gas analysis emphasizes that the behavior of the two tested prototypes was very similar. For all three fuels used, the CO2 concentration levels were slightly lower in the case of the additive-manufactured prototype P2. The CO concentration levels were significantly higher in the case of the additive-manufactured prototype P2 when 60% H2/40% CH4 and 80% H2/20% CH4 mixtures were used as fuel. When pure H2 was used as fuel, the measured data suggest that no additional CO was produced during the combustion process, and the level of CO was similar to that from the Garrett micro gas turbine in all five measuring points. The NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO concentration was significantly lower in the case of the additive-manufactured prototype (P2) in comparison with the classic manufactured prototype (P1). Examining the data obtained from the PIV measurements of the flow within the mixing region shows that the highest axial velocity component value on the centerline was measured for the P1 prototype. The acoustic measurements showed that a higher H2 concentration led to a reduction in noise of approximately 1.5 dB for both afterburner prototypes. The outcomes reveal that the examined V-gutter flame holder prototype flow was smooth, without any perpendicular oscillations, without chaotic motions or turbulent oscillations to the flow direction, across all tested conditions, keeping constant thermal power.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"115 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.3390/inventions9020045
Manyou Sun, E. Toyserkani
Poor surface quality is one of the drawbacks of metal parts made by additive manufacturing (AM)—they normally possess relatively high surface roughness and different types of surface irregularities. Post-processing operations are usually needed to reduce the surface roughness to have ready-to-use parts. Among all the surface treatment techniques, electrochemical polishing has the highest finishing efficiency and flexibility. However, although the average surface roughness can be reduced effectively (more than 80% roughness reduction), large-scale surface waviness still remains an issue when finishing metal AM parts. To maintain the finishing efficiency while reducing the surface waviness, a novel hybrid surface finishing technique is designed, which involves the combination of electropolishing, ultrasonic vibration, and abrasion. Preliminary experiments to prove the feasibility of novel hybrid finishing methods were conducted on Ti6Al4V coupons manufactured via laser powder bed fusion (LPBF). Electropolishing, a combination of ultrasound and abrasion, and hybrid finishing were conducted for process optimization and comparison purposes. The effects of the voltage, inter-electrode gap, temperature, ultrasonic amplitude, abrasive concentration, and processing time were studied and optimized. When similar optimal arithmetic mean height values (Sa ≈ 1 μm) are achieved for both processes, the arithmetic mean waviness values (Wa) obtained from hybrid finishing are much less than those from sole electropolishing after the same processing time, with the amount being 61.7% less after 30 min and 40.0% after 45 min.
{"title":"A Novel Hybrid Ultrasound Abrasive-Driven Electrochemical Surface Finishing Technique for Additively Manufactured Ti6Al4V Parts","authors":"Manyou Sun, E. Toyserkani","doi":"10.3390/inventions9020045","DOIUrl":"https://doi.org/10.3390/inventions9020045","url":null,"abstract":"Poor surface quality is one of the drawbacks of metal parts made by additive manufacturing (AM)—they normally possess relatively high surface roughness and different types of surface irregularities. Post-processing operations are usually needed to reduce the surface roughness to have ready-to-use parts. Among all the surface treatment techniques, electrochemical polishing has the highest finishing efficiency and flexibility. However, although the average surface roughness can be reduced effectively (more than 80% roughness reduction), large-scale surface waviness still remains an issue when finishing metal AM parts. To maintain the finishing efficiency while reducing the surface waviness, a novel hybrid surface finishing technique is designed, which involves the combination of electropolishing, ultrasonic vibration, and abrasion. Preliminary experiments to prove the feasibility of novel hybrid finishing methods were conducted on Ti6Al4V coupons manufactured via laser powder bed fusion (LPBF). Electropolishing, a combination of ultrasound and abrasion, and hybrid finishing were conducted for process optimization and comparison purposes. The effects of the voltage, inter-electrode gap, temperature, ultrasonic amplitude, abrasive concentration, and processing time were studied and optimized. When similar optimal arithmetic mean height values (Sa ≈ 1 μm) are achieved for both processes, the arithmetic mean waviness values (Wa) obtained from hybrid finishing are much less than those from sole electropolishing after the same processing time, with the amount being 61.7% less after 30 min and 40.0% after 45 min.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":" 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140683800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.3390/inventions9020044
Tuynh Van Pham, Anh Tan Nguyen
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method.
{"title":"A Modified Reduced-Order Generalized Integrator–Frequency-Locked Loop-Based Sensorless Vector Control Scheme Including the Maximum Power Point Tracking Algorithm for Grid-Connected Squirrel-Cage Induction Generator Wind Turbine Systems","authors":"Tuynh Van Pham, Anh Tan Nguyen","doi":"10.3390/inventions9020044","DOIUrl":"https://doi.org/10.3390/inventions9020044","url":null,"abstract":"In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"180 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.3390/inventions9020043
Jianxiong Zhu, Bairong Sun, Luyu Jia, Hai-Yan Hu
Sensing technology drives innovation in digital technology, especially in data acquisition [...]
传感技术推动了数字技术的创新,尤其是数据采集 [...]
{"title":"From Sensing Technology towards Digital Twin in Applications","authors":"Jianxiong Zhu, Bairong Sun, Luyu Jia, Hai-Yan Hu","doi":"10.3390/inventions9020043","DOIUrl":"https://doi.org/10.3390/inventions9020043","url":null,"abstract":"Sensing technology drives innovation in digital technology, especially in data acquisition [...]","PeriodicalId":509629,"journal":{"name":"Inventions","volume":" 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.3390/inventions9020042
Y. Fu, Yanzhe Li
This study investigates the application of thermoelectric power generation devices in conjunction with cold chain logistics transport vehicles, focusing on their efficiency and performance. Our experimental results highlight the impact of thermoelectric module characteristics, such as thermal conductivity and the filling thickness of copper foam, on the energy utilization efficiency of the system. The specific experimental setup involved a simulated logistics cold chain transport vehicle exhaust waste heat recovery thermoelectric power generation system, consisting of a high-temperature exhaust heat exchanger channel and two side cooling water tanks. Thermoelectric modules (TEMs) were installed between the heat exchanger and the water tanks to use the temperature difference and convert heat energy into electrical energy. The analysis demonstrates that using high-performance thermoelectric modules with a lower thermal conductivity results in better utilization of the temperature difference for power generation. Additionally, the insertion of porous metal copper foam within the heat exchanger channel enhances convective heat transfer, leading to an improved performance. Furthermore, the study examines the concepts of exergy and entropy generation, providing insights into the system energy conversion processes and efficiency. Overall, this research offers valuable insights for optimizing the design and operation of thermoelectric generators in cold chain logistics transport vehicles to enhance energy utilization and sustainability.
{"title":"Enhanced Heat Transfer in Thermoelectric Generator Heat Exchanger for Sustainable Cold Chain Logistics: Entropy and Exergy Analysis","authors":"Y. Fu, Yanzhe Li","doi":"10.3390/inventions9020042","DOIUrl":"https://doi.org/10.3390/inventions9020042","url":null,"abstract":"This study investigates the application of thermoelectric power generation devices in conjunction with cold chain logistics transport vehicles, focusing on their efficiency and performance. Our experimental results highlight the impact of thermoelectric module characteristics, such as thermal conductivity and the filling thickness of copper foam, on the energy utilization efficiency of the system. The specific experimental setup involved a simulated logistics cold chain transport vehicle exhaust waste heat recovery thermoelectric power generation system, consisting of a high-temperature exhaust heat exchanger channel and two side cooling water tanks. Thermoelectric modules (TEMs) were installed between the heat exchanger and the water tanks to use the temperature difference and convert heat energy into electrical energy. The analysis demonstrates that using high-performance thermoelectric modules with a lower thermal conductivity results in better utilization of the temperature difference for power generation. Additionally, the insertion of porous metal copper foam within the heat exchanger channel enhances convective heat transfer, leading to an improved performance. Furthermore, the study examines the concepts of exergy and entropy generation, providing insights into the system energy conversion processes and efficiency. Overall, this research offers valuable insights for optimizing the design and operation of thermoelectric generators in cold chain logistics transport vehicles to enhance energy utilization and sustainability.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"46 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.3390/inventions9020040
Juan Jesús Reyes Valdez, Edna Carina De la Cruz Terrazas, Eugenio Rodríguez González
This document describes a proprietary design, construction, programming and testing of a low-cost pulsed high-voltage direct current (HVDC) power supply with an output of 430 V and power of 25 W. The design obtained allows costs to be reduced compared to commercial ones, highlighting that the manufacturing of this HVDC is easy to replicate. To demonstrate the operation of the pulsed power supply prototype, coatings of silicon carbide (SiC) and SiC mixed with graphite (C) and/or alumina (Al2O3) were made using the electrophoretic deposition (EPD) method. After processing, samples underwent a heat treatment at 500 °C to evaluate their thermoelectric (TE) efficiency. The samples were analysed via X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Seebeck coefficient, electrical conductivity and thermal conductivity. The Seebeck coefficient, electrical conductivity and thermal conductivity were measured in a temperature range of 100–500 °C in a nitrogen (N2) atmosphere. The electrical conductivity of the SiC 6C-4Al sample was 0.65 S/cm at 500 °C, while the maximum Seebeck coefficient was 2500 μV/K of the SiC 6C-4Al sample at 200 °C. The thermal conductivity of SiC 6C-4Al was in the range of 0.35–0.37 W/m·K, which was much lower than the SiC sample free of alumina and graphite in the same measured temperature range. In conclusion, the SiC 6C-4Al sample presented the highest figure of merit with a ZT ≈ 0.01.
本文介绍了一种低成本脉冲高压直流(HVDC)电源的专有设计、制造、编程和测试,其输出电压为 430 V,功率为 25 W。为了演示脉冲电源原型的运行,使用电泳沉积(EPD)方法制作了碳化硅(SiC)和碳化硅与石墨(C)和/或氧化铝(Al2O3)混合的涂层。加工完成后,样品在 500 °C 下进行热处理,以评估其热电(TE)效率。样品通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、拉曼光谱、塞贝克系数、电导率和热导率进行了分析。塞贝克系数、电导率和热导率是在氮气(N2)环境中于 100-500 °C 的温度范围内测量的。在 500 ℃ 时,SiC 6C-4Al 样品的电导率为 0.65 S/cm,而在 200 ℃ 时,SiC 6C-4Al 样品的最大塞贝克系数为 2500 μV/K。SiC 6C-4Al 的热导率范围为 0.35-0.37 W/m-K,在相同的测量温度范围内远低于不含氧化铝和石墨的 SiC 样品。总之,SiC 6C-4Al 样品的性能指标最高,ZT ≈ 0.01。
{"title":"Design, Construction and Programming of a Low-Cost Pulsed High-Voltage Direct Current Power Supply for the Electrophoretic Deposition of Silicon Carbide Mixed with Graphite and/or Alumina for Thermoelectric Applications","authors":"Juan Jesús Reyes Valdez, Edna Carina De la Cruz Terrazas, Eugenio Rodríguez González","doi":"10.3390/inventions9020040","DOIUrl":"https://doi.org/10.3390/inventions9020040","url":null,"abstract":"This document describes a proprietary design, construction, programming and testing of a low-cost pulsed high-voltage direct current (HVDC) power supply with an output of 430 V and power of 25 W. The design obtained allows costs to be reduced compared to commercial ones, highlighting that the manufacturing of this HVDC is easy to replicate. To demonstrate the operation of the pulsed power supply prototype, coatings of silicon carbide (SiC) and SiC mixed with graphite (C) and/or alumina (Al2O3) were made using the electrophoretic deposition (EPD) method. After processing, samples underwent a heat treatment at 500 °C to evaluate their thermoelectric (TE) efficiency. The samples were analysed via X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Seebeck coefficient, electrical conductivity and thermal conductivity. The Seebeck coefficient, electrical conductivity and thermal conductivity were measured in a temperature range of 100–500 °C in a nitrogen (N2) atmosphere. The electrical conductivity of the SiC 6C-4Al sample was 0.65 S/cm at 500 °C, while the maximum Seebeck coefficient was 2500 μV/K of the SiC 6C-4Al sample at 200 °C. The thermal conductivity of SiC 6C-4Al was in the range of 0.35–0.37 W/m·K, which was much lower than the SiC sample free of alumina and graphite in the same measured temperature range. In conclusion, the SiC 6C-4Al sample presented the highest figure of merit with a ZT ≈ 0.01.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"35 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.3390/inventions9020041
A. Răileanu, Liliana Rusu, Andra Marcu, Eugen Rusu
The entrance in the Sulina channel in the Black Sea is the target area of this study. This represents the southern gate of the seventh Pan-European transport corridor, and it is usually subjected to high navigation traffic. The main objective of the work is to provide a more comprehensive picture concerning the past and future expected dynamics of the environmental matrix in this coastal area, including especially the extreme wind and wave conditions in connection with the possible navigation risks. The methodology considered assumes analyses performed at three different levels. First, an analysis of some in situ measurements at the zero-kilometer point of the Danube is carried out for the 15-year period of 2009–2023. Together with the maximum wind speed and the maximum value of the wind gusts, the water level variation was analyzed at this point. As a second step, the analysis is based on wind speed data provided by regional climate models. Two periods, each spanning 30 years, are considered. These are the recent past (1976–2005), when comparisons with ERA5 reanalysis data were also performed, and the near future (2041–2070), when two different models and three climate scenarios were considered. The focus was on the extreme wind speed values, performing comparisons between the past and future expected extreme winds. Finally, the third analysis is related to the wave conditions. Thus, using as a forcing factor each of the wind fields that was previously analyzed, simulations employing a spectral wave model were carried out. The wave modeling system was focused using three different computational domains with increasing resolution towards the target area, and the nearshore wave conditions were evaluated. The results show that both the extreme wind and wave conditions are expected to slightly increase in the future. Especially in the wintertime, strong wind fields are often expected in this area, with wind gusts exceeding more than 70% of the hourly average wind velocity. With regard to the waves, due to the complex nearshore phenomena, considerable enhancements in terms of significant wave heights are induced, and there is also an elevated risk of the occurrence of rogue waves. This work is still ongoing, and taking into account the high navigation risks highlighted, the next step would be to elaborate the risk assessment of severe shipping conditions, particularly related to the likelihood or probability of adverse conditions with the potential of generating hazardous situations in this coastal environment.
{"title":"The Expected Dynamics for the Extreme Wind and Wave Conditions at the Mouths of the Danube River in Connection with the Navigation Hazards","authors":"A. Răileanu, Liliana Rusu, Andra Marcu, Eugen Rusu","doi":"10.3390/inventions9020041","DOIUrl":"https://doi.org/10.3390/inventions9020041","url":null,"abstract":"The entrance in the Sulina channel in the Black Sea is the target area of this study. This represents the southern gate of the seventh Pan-European transport corridor, and it is usually subjected to high navigation traffic. The main objective of the work is to provide a more comprehensive picture concerning the past and future expected dynamics of the environmental matrix in this coastal area, including especially the extreme wind and wave conditions in connection with the possible navigation risks. The methodology considered assumes analyses performed at three different levels. First, an analysis of some in situ measurements at the zero-kilometer point of the Danube is carried out for the 15-year period of 2009–2023. Together with the maximum wind speed and the maximum value of the wind gusts, the water level variation was analyzed at this point. As a second step, the analysis is based on wind speed data provided by regional climate models. Two periods, each spanning 30 years, are considered. These are the recent past (1976–2005), when comparisons with ERA5 reanalysis data were also performed, and the near future (2041–2070), when two different models and three climate scenarios were considered. The focus was on the extreme wind speed values, performing comparisons between the past and future expected extreme winds. Finally, the third analysis is related to the wave conditions. Thus, using as a forcing factor each of the wind fields that was previously analyzed, simulations employing a spectral wave model were carried out. The wave modeling system was focused using three different computational domains with increasing resolution towards the target area, and the nearshore wave conditions were evaluated. The results show that both the extreme wind and wave conditions are expected to slightly increase in the future. Especially in the wintertime, strong wind fields are often expected in this area, with wind gusts exceeding more than 70% of the hourly average wind velocity. With regard to the waves, due to the complex nearshore phenomena, considerable enhancements in terms of significant wave heights are induced, and there is also an elevated risk of the occurrence of rogue waves. This work is still ongoing, and taking into account the high navigation risks highlighted, the next step would be to elaborate the risk assessment of severe shipping conditions, particularly related to the likelihood or probability of adverse conditions with the potential of generating hazardous situations in this coastal environment.","PeriodicalId":509629,"journal":{"name":"Inventions","volume":"115 S18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140709427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}