Transverse free vibration analysis of thin sectorial plates by the weak form quadrature element method

Hebin Liu, Hongzhi Zhong
{"title":"Transverse free vibration analysis of thin sectorial plates by the weak form quadrature element method","authors":"Hebin Liu, Hongzhi Zhong","doi":"10.1177/10775463231225276","DOIUrl":null,"url":null,"abstract":"The weak form quadrature element method is applied to free vibration analysis of thin sectorial plates with arbitrary vertex angles and boundary conditions. To tackle the strong stress singularity around the vertex, analytical displacement descriptions are introduced into the inner sectorial subdomain, while the outer annular subdomain is modeled by a single weak form quadrature thin plate element. The continuity on the interface between the two subdomains is enforced afterwards. Eventually, a generalized eigenvalue formulation is established after introducing Hamilton’s principle. The first six non-dimensional frequency parameters for various vertex angles and boundary conditions are obtained and compared with available results. Several typical free vibration modes are plotted. The accuracy, convergence rate, and computational cost of the present formulation are discussed at length.","PeriodicalId":508293,"journal":{"name":"Journal of Vibration and Control","volume":"65 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10775463231225276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The weak form quadrature element method is applied to free vibration analysis of thin sectorial plates with arbitrary vertex angles and boundary conditions. To tackle the strong stress singularity around the vertex, analytical displacement descriptions are introduced into the inner sectorial subdomain, while the outer annular subdomain is modeled by a single weak form quadrature thin plate element. The continuity on the interface between the two subdomains is enforced afterwards. Eventually, a generalized eigenvalue formulation is established after introducing Hamilton’s principle. The first six non-dimensional frequency parameters for various vertex angles and boundary conditions are obtained and compared with available results. Several typical free vibration modes are plotted. The accuracy, convergence rate, and computational cost of the present formulation are discussed at length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用弱形式正交元素法分析扇形薄板的横向自由振动
弱形式正交元素法适用于具有任意顶点角和边界条件的扇形薄板的自由振动分析。为了解决顶点周围的强应力奇异性问题,在内部扇形子域中引入了分析位移描述,而外部环形子域则采用单个弱式正交薄板元素建模。之后,在两个子域之间的界面上执行连续性。最后,在引入汉密尔顿原理后,建立了广义特征值公式。得到了不同顶点角和边界条件下的前六个非维度频率参数,并与现有结果进行了比较。绘制了几种典型的自由振动模式。详细讨论了本公式的准确性、收敛速度和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resonance frequency tracking control of a three-degree-of-freedom acoustic resonance system Dynamic modeling of configuration-controllable phononic crystal using NARX neural networks Laminated permanent magnet array eddy current damper for large-scale precision micro-vibration isolation Direct solutions for robust vibration suppression through motion design Semi-active yaw dampers in locomotive running gear: New control algorithms and verification of their stabilising effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1