Gengfeng Yu, Chao Yu, Zunan Fu, Jianguo Jing, Zheng Hu, Kun Pan
{"title":"Mechanical Consequences of Suffusion on Gap-Graded Soils with Stress Anisotropy: A CFD–DEM Perspective","authors":"Gengfeng Yu, Chao Yu, Zunan Fu, Jianguo Jing, Zheng Hu, Kun Pan","doi":"10.3390/buildings14010122","DOIUrl":null,"url":null,"abstract":"Natural soil in geotechnical engineering is commonly in the anisotropic stress state, but the effect of stress anisotropy on soil suffusion remains unclear. In this study, the coupled computational fluid dynamics–discrete element method was utilised to simulate the complete suffusion process of gap-graded soils by introducing a vertical seepage flow through the soil assembly. The mechanical consequences of suffusion on gap-graded soils were evaluated by comparing the triaxial shear responses of soil specimens before and after suffusion. The results indicated that the specimens with greater stress anisotropy are more vulnerable to suffusion, particularly those with the principal stress that is coincident with the principal flow direction. Compared with the isotropically consolidated specimens, the specimens with greater stress anisotropy exhibited more pronounced reduction in shear strength and secant stiffness after suffusion. The effects of stress anisotropy on the suffusion and mechanical properties of gap-graded soils were also evaluated from a microcosmic perspective in terms of force chain, coordination number, and fabric tensor.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"13 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural soil in geotechnical engineering is commonly in the anisotropic stress state, but the effect of stress anisotropy on soil suffusion remains unclear. In this study, the coupled computational fluid dynamics–discrete element method was utilised to simulate the complete suffusion process of gap-graded soils by introducing a vertical seepage flow through the soil assembly. The mechanical consequences of suffusion on gap-graded soils were evaluated by comparing the triaxial shear responses of soil specimens before and after suffusion. The results indicated that the specimens with greater stress anisotropy are more vulnerable to suffusion, particularly those with the principal stress that is coincident with the principal flow direction. Compared with the isotropically consolidated specimens, the specimens with greater stress anisotropy exhibited more pronounced reduction in shear strength and secant stiffness after suffusion. The effects of stress anisotropy on the suffusion and mechanical properties of gap-graded soils were also evaluated from a microcosmic perspective in terms of force chain, coordination number, and fabric tensor.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates