Unsupervised Deep Feature Learning for Icequake Discrimination at Neumayer Station, Antarctica

Louisa Kinzel, Tanja Fromm, Vera Schlindwein, Peter Maass
{"title":"Unsupervised Deep Feature Learning for Icequake Discrimination at Neumayer Station, Antarctica","authors":"Louisa Kinzel, Tanja Fromm, Vera Schlindwein, Peter Maass","doi":"10.1785/0220230078","DOIUrl":null,"url":null,"abstract":"\n Unsupervised machine learning methods are gaining attention in the seismological community as more and larger datasets of continuous waveforms are collected. Recently, contrastive learning for unsupervised feature learning has shown great success in the field of computer vision and other domains, and we aim to transfer these methods to the domain of seismology. Contrastive learning algorithms use data augmentation to implement an instance-level discrimination task: The feature representations of two augmented versions of the same data example are trained to be similar, when at the same time dissimilar to other data examples. In particular, we use the popular contrastive learning method SimCLR. We test data augmentation strategies varying amplitude and frequency of seismological signals, and apply contrastive learning methods to automatically learn features. We use a dataset containing various mostly cryogenic waveforms detected by an STA/LTA short-term average/long-term average algorithm on continuous waveform recordings from the geophysical observatory at Neumayer station, Antarctica. The quality of the features is evaluated on a hand-labeled dataset that includes icequakes, earthquakes, and spikes, and on a larger unlabeled dataset using a classical clustering method, k-means. Results show that the approach separates the different hand-labeled groups with an accuracy of up to 88% and separates meaningful groups within the unlabeled data. Thus, we provide an effective tool for the unsupervised exploration of large seismological datasets and the automated compilation of event catalogs.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"128 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised machine learning methods are gaining attention in the seismological community as more and larger datasets of continuous waveforms are collected. Recently, contrastive learning for unsupervised feature learning has shown great success in the field of computer vision and other domains, and we aim to transfer these methods to the domain of seismology. Contrastive learning algorithms use data augmentation to implement an instance-level discrimination task: The feature representations of two augmented versions of the same data example are trained to be similar, when at the same time dissimilar to other data examples. In particular, we use the popular contrastive learning method SimCLR. We test data augmentation strategies varying amplitude and frequency of seismological signals, and apply contrastive learning methods to automatically learn features. We use a dataset containing various mostly cryogenic waveforms detected by an STA/LTA short-term average/long-term average algorithm on continuous waveform recordings from the geophysical observatory at Neumayer station, Antarctica. The quality of the features is evaluated on a hand-labeled dataset that includes icequakes, earthquakes, and spikes, and on a larger unlabeled dataset using a classical clustering method, k-means. Results show that the approach separates the different hand-labeled groups with an accuracy of up to 88% and separates meaningful groups within the unlabeled data. Thus, we provide an effective tool for the unsupervised exploration of large seismological datasets and the automated compilation of event catalogs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于南极洲 Neumayer 站冰震判别的无监督深度特征学习
随着越来越多的连续波形数据集被收集起来,无监督机器学习方法正日益受到地震学界的关注。最近,用于无监督特征学习的对比学习在计算机视觉和其他领域取得了巨大成功,我们希望将这些方法应用到地震学领域。对比学习算法利用数据增强来实现实例级的判别任务:同一数据示例的两个增强版本的特征表征经过训练后变得相似,但同时又与其他数据示例不同。我们特别使用了流行的对比学习方法 SimCLR。我们测试了不同地震信号振幅和频率的数据增强策略,并应用对比学习方法自动学习特征。我们使用了一个数据集,其中包含了南极洲 Neumayer 站地球物理观测站连续波形记录上的 STA/LTA 短期平均/长期平均算法检测到的各种主要低温波形。在一个包含冰震、地震和尖峰的手工标记数据集上,以及在一个使用经典聚类方法 k-means 的更大的未标记数据集上,对特征的质量进行了评估。结果表明,该方法分离不同手工标记组的准确率高达 88%,并能在未标记数据中分离出有意义的组。因此,我们为大型地震数据集的无监督探索和事件目录的自动编制提供了一种有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador Constraining the Geometry of the Northwest Pacific Slab Using Deep Clustering of Slab Guided Waves An Empirically Constrained Forecasting Strategy for Induced Earthquake Magnitudes Using Extreme Value Theory A Software Tool for Hybrid Earthquake Forecasting in New Zealand DASPy: A Python Toolbox for DAS Seismology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1