DASPy: A Python Toolbox for DAS Seismology

Minzhe Hu, Zefeng Li
{"title":"DASPy: A Python Toolbox for DAS Seismology","authors":"Minzhe Hu, Zefeng Li","doi":"10.1785/0220240124","DOIUrl":null,"url":null,"abstract":"\n Distributed acoustic sensing (DAS) has emerged as a novel technology in geophysics, owing to its high-sensing density, cost effectiveness, and adaptability to extreme environments. Nonetheless, DAS differs from traditional seismic acquisition technologies in many aspects: big data volume, equidistant sensing, measurement of axial strain (strain rate), and noise characteristics. These differences make DAS data processing challenging for new hands. To lower the bar of DAS data processing, we develop an open-source Python toolbox called DASPy, which encompasses classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization, and specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain–velocity conversion. Using openly available DAS data as examples, this article makes an overview and tutorial on the eight modules in DASPy to illustrate the algorithms and practical applications. We anticipate DASPy to provide convenience for researchers unfamiliar with DAS data and help facilitate the rapid growth of DAS seismology.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"34 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220240124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed acoustic sensing (DAS) has emerged as a novel technology in geophysics, owing to its high-sensing density, cost effectiveness, and adaptability to extreme environments. Nonetheless, DAS differs from traditional seismic acquisition technologies in many aspects: big data volume, equidistant sensing, measurement of axial strain (strain rate), and noise characteristics. These differences make DAS data processing challenging for new hands. To lower the bar of DAS data processing, we develop an open-source Python toolbox called DASPy, which encompasses classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization, and specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain–velocity conversion. Using openly available DAS data as examples, this article makes an overview and tutorial on the eight modules in DASPy to illustrate the algorithms and practical applications. We anticipate DASPy to provide convenience for researchers unfamiliar with DAS data and help facilitate the rapid growth of DAS seismology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DASPy:用于 DAS 地震学的 Python 工具箱
分布式声学传感(DAS)因其传感密度高、成本效益高、可适应极端环境等优点,已成为地球物理学领域的一项新技术。然而,DAS 与传统的地震采集技术有许多不同之处:数据量大、等距传感、轴向应变(应变率)测量和噪声特性。这些差异使得 DAS 数据处理对新手来说具有挑战性。为了降低 DAS 数据处理的门槛,我们开发了一个名为 DASPy 的开源 Python 工具箱,其中包含预处理、滤波、频谱分析和可视化等经典地震数据处理技术,以及去噪、波形分解、道属性分析和应变速度转换等 DAS 应用的专门算法。本文以公开的 DAS 数据为例,对 DASPy 中的八个模块进行了概述和教程,以说明算法和实际应用。我们期待 DASPy 能够为不熟悉 DAS 数据的研究人员提供方便,促进 DAS 地震学的快速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador Constraining the Geometry of the Northwest Pacific Slab Using Deep Clustering of Slab Guided Waves An Empirically Constrained Forecasting Strategy for Induced Earthquake Magnitudes Using Extreme Value Theory A Software Tool for Hybrid Earthquake Forecasting in New Zealand DASPy: A Python Toolbox for DAS Seismology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1