RISK FAILURE REDUCTION IN 3D PRINTER THROUGH SECUENTIAL USE OF DFMEA, FAULT TREE AND BAYESIAN NETWORKS
IF 0.8 4区 工程技术Q3 ENGINEERING, MULTIDISCIPLINARYDynaPub Date : 2024-01-01DOI:10.6036/10794
Secundino RAMOS LOZANO, Manuel Arnoldo RODRIGUEZ MEDINA, Ericka Berenice HERRERA RIOS, Eduardo Rafael POBLANO OJINAGA
{"title":"RISK FAILURE REDUCTION IN 3D PRINTER THROUGH SECUENTIAL USE OF DFMEA, FAULT TREE AND BAYESIAN NETWORKS","authors":"Secundino RAMOS LOZANO, Manuel Arnoldo RODRIGUEZ MEDINA, Ericka Berenice HERRERA RIOS, Eduardo Rafael POBLANO OJINAGA","doi":"10.6036/10794","DOIUrl":null,"url":null,"abstract":"The need to manufacture reliable devices, which include features that guarantee good performance and do not cause problems for the end user, is of paramount importance for manufacturers. To meet this objective, it is necessary to perform a thorough analysis of the devices to identify potential failure events in order to be able to take actions to reduce their risk of occurrence and increase the reliability and quality of the device. This research paper presents an effective tool for the detection from the design of possible failures in the devices, which allows actions to be taken for their correction in early stages. This analysis methodology combines several advanced fault analysis techniques, such as DFMEA, Fault Tree, and Bayesian networks, making the process of analyzing, detecting and correcting potential device failures more efficient. This methodology is applied to the analysis of a commercial 3D printer that uses fused filament deposition technology model Anet A8, making a preliminary filter using a DFMEA for subsequent analysis fault tree and Bayesian network managing to determine the probability of occurrence of 3D printing failures, this allows to take actions and establish priorities of corrective actions focused on reducing the risk of failure based on its probability of occurrence.\nKeywords: DFMEA, Fault tree, Bayesian Network, 3D printing, Fault probability","PeriodicalId":11386,"journal":{"name":"Dyna","volume":"47 12","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyna","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6036/10794","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The need to manufacture reliable devices, which include features that guarantee good performance and do not cause problems for the end user, is of paramount importance for manufacturers. To meet this objective, it is necessary to perform a thorough analysis of the devices to identify potential failure events in order to be able to take actions to reduce their risk of occurrence and increase the reliability and quality of the device. This research paper presents an effective tool for the detection from the design of possible failures in the devices, which allows actions to be taken for their correction in early stages. This analysis methodology combines several advanced fault analysis techniques, such as DFMEA, Fault Tree, and Bayesian networks, making the process of analyzing, detecting and correcting potential device failures more efficient. This methodology is applied to the analysis of a commercial 3D printer that uses fused filament deposition technology model Anet A8, making a preliminary filter using a DFMEA for subsequent analysis fault tree and Bayesian network managing to determine the probability of occurrence of 3D printing failures, this allows to take actions and establish priorities of corrective actions focused on reducing the risk of failure based on its probability of occurrence.
Keywords: DFMEA, Fault tree, Bayesian Network, 3D printing, Fault probability
期刊介绍:
Founded in 1926, DYNA is one of the journal of general engineering most influential and prestigious in the world, as it recognizes Clarivate Analytics.
Included in Science Citation Index Expanded, its impact factor is published every year in Journal Citations Reports (JCR).
It is the Official Body for Science and Technology of the Spanish Federation of Regional Associations of Engineers (FAIIE).
Scientific journal agreed with AEIM (Spanish Association of Mechanical Engineering)
In character Scientific-technical, it is the most appropriate way for communication between Multidisciplinary Engineers and for expressing their ideas and experience.
DYNA publishes 6 issues per year: January, March, May, July, September and November.