Synthetic interventions in epigenome: Unraveling chromatin's potential for therapeutic applications

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2024-01-03 DOI:10.1016/j.coisb.2023.100504
Junyoung Kim , Jonghyun Kim , Minhee Park
{"title":"Synthetic interventions in epigenome: Unraveling chromatin's potential for therapeutic applications","authors":"Junyoung Kim ,&nbsp;Jonghyun Kim ,&nbsp;Minhee Park","doi":"10.1016/j.coisb.2023.100504","DOIUrl":null,"url":null,"abstract":"<div><p>The epigenome, comprising DNA and histone modifications alongside intricate chromatin structures, has emerged as pivotal players in disease development. These factors offer promising opportunities for therapeutic interventions, expanding the avenues traditionally explored within genetic elements. Eukaryotic chromatin exhibits an impressive capacity for computation and information storage, fueled by the dynamic interplay of factors that modify the physicochemical states of chromatin. With its unique attributes, chromatin emerges as a compelling candidate for synthetic intervention and therapeutic reprogramming. In this review, we explore pioneering initiatives aimed at synthetically manipulating the epigenome, a relatively uncharted domain with transformative potential for both diagnostics and treatments.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310023000616/pdfft?md5=d2fd90b0ed0b99197e5a1965c2be3e3b&pid=1-s2.0-S2452310023000616-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The epigenome, comprising DNA and histone modifications alongside intricate chromatin structures, has emerged as pivotal players in disease development. These factors offer promising opportunities for therapeutic interventions, expanding the avenues traditionally explored within genetic elements. Eukaryotic chromatin exhibits an impressive capacity for computation and information storage, fueled by the dynamic interplay of factors that modify the physicochemical states of chromatin. With its unique attributes, chromatin emerges as a compelling candidate for synthetic intervention and therapeutic reprogramming. In this review, we explore pioneering initiatives aimed at synthetically manipulating the epigenome, a relatively uncharted domain with transformative potential for both diagnostics and treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表观基因组的合成干预:揭示染色质的治疗应用潜力
表观基因组包括 DNA 和组蛋白修饰以及错综复杂的染色质结构,已成为疾病发展的关键因素。这些因素为治疗干预提供了大好机会,拓展了传统上在遗传因子中探索的途径。真核染色质在改变染色质理化状态的各种因素的动态相互作用下,表现出惊人的计算和信息存储能力。染色质具有独特的属性,是合成干预和治疗重编程的理想候选对象。在这篇综述中,我们将探讨旨在综合操纵表观基因组的开创性计划,这是一个相对未知的领域,在诊断和治疗方面都具有变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1