Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction

Lei Li , Xinyan Dai , Meichi Lu , Changfa Guo , Saikh Mohammad Wabaidur , Xi-Lin Wu , Zhangrong Lou , Yijun Zhong , Yong Hu
{"title":"Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction","authors":"Lei Li ,&nbsp;Xinyan Dai ,&nbsp;Meichi Lu ,&nbsp;Changfa Guo ,&nbsp;Saikh Mohammad Wabaidur ,&nbsp;Xi-Lin Wu ,&nbsp;Zhangrong Lou ,&nbsp;Yijun Zhong ,&nbsp;Yong Hu","doi":"10.1016/j.apmate.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO<sub>2</sub>, and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites. We herein report an ion-loading pyrolysis route to <em>in-situ</em> anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets (Pd<sub>TP</sub>/Pd<sub>SA</sub>-CN) for high-efficiency photoreduction of CO<sub>2</sub>. The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N<sub>4</sub> sites through the carbon nitride networks, and the optimized Pd<sub>TP</sub>/Pd<sub>SA</sub>-CN photocatalyst exhibits a CO evolution rate up to 46.5 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup> with nearly 100% selectivity. As revealed by spectroscopic and theoretical analyses, the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms, together with the improved efficiencies of light-harvesting and charge separation/transport. This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal, and unveiled the underlying mechanism for expedited photocatalytic efficiency.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000010/pdfft?md5=228e102479e3d12c1b50d38eabab6970&pid=1-s2.0-S2772834X24000010-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO2, and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites. We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets (PdTP/PdSA-CN) for high-efficiency photoreduction of CO2. The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N4 sites through the carbon nitride networks, and the optimized PdTP/PdSA-CN photocatalyst exhibits a CO evolution rate up to 46.5 ​μmol ​g−1 ​h−1 with nearly 100% selectivity. As revealed by spectroscopic and theoretical analyses, the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms, together with the improved efficiencies of light-harvesting and charge separation/transport. This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal, and unveiled the underlying mechanism for expedited photocatalytic efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过原位锚定孪生钯纳米粒子实现 g-C3N4 纳米片上电子富集的单钯位点,从而实现高效的二氧化碳光还原
调节单原子金属协同催化剂的电子结构对于高活性光催化二氧化碳至关重要,而开发一种简便的方法来改变原子光催化位点的分散性尤其具有挑战性。我们在此报告了一种离子负载热解路线,可在超薄氮化石墨碳纳米片(PdTP/PdSA-CN)上原位锚定钯单原子和孪生钯纳米颗粒,以实现二氧化碳的高效光还原。经过优化的 PdTP/PdSA-CN 光催化剂的 CO 演化率高达 46.5 μmol g-1 h-1,选择性接近 100%。光谱和理论分析表明,这种优异的光催化活性归因于电子富集的钯单原子上羰基物种解吸障碍的降低,以及光收集和电荷分离/传输效率的提高。这项工作证明了在与原子金属支撑物的强烈电子相互作用的辅助下,孪生金属纳米粒子对单个活性位点的电子密度进行了工程化处理,并揭示了提高光催化效率的内在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1