首页 > 最新文献

Advanced Powder Materials最新文献

英文 中文
Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100261
Xiaoyi Wang , Zhendong Li , Qinhao Mao , Shun Wu , Yifei Cheng , Yinping Qin , Zhenlian Chen , Zhe Peng , Xiayin Yao , Deyu Wang
Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the most prominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is still plagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decomposition in advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode, however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties. Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustained inorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionically bonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Li+ and form key components boosting the structural stability and Li+ transfer ability of the artificial layer upon cycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-rich nature and promising Li protective ability during long-term cycling, while the electrolyte-independent property enables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs with significantly enhanced performances. This strategy establishes an alternative designing route of Li protective layers for reliable LMBs.
{"title":"Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode","authors":"Xiaoyi Wang ,&nbsp;Zhendong Li ,&nbsp;Qinhao Mao ,&nbsp;Shun Wu ,&nbsp;Yifei Cheng ,&nbsp;Yinping Qin ,&nbsp;Zhenlian Chen ,&nbsp;Zhe Peng ,&nbsp;Xiayin Yao ,&nbsp;Deyu Wang","doi":"10.1016/j.apmate.2024.100261","DOIUrl":"10.1016/j.apmate.2024.100261","url":null,"abstract":"<div><div>Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the most prominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is still plagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decomposition in advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode, however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties. Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustained inorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionically bonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Li<sup>+</sup> and form key components boosting the structural stability and Li<sup>+</sup> transfer ability of the artificial layer upon cycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-rich nature and promising Li protective ability during long-term cycling, while the electrolyte-independent property enables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs with significantly enhanced performances. This strategy establishes an alternative designing route of Li protective layers for reliable LMBs.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100261"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100260
Aohan Xu , Chong Guo , Weiqi Qian , Chris R. Bowen , Ya Yang
Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms of clean energy from natural environmental sources. However, the photoelectric performance of these materials is frequently constrained by heat generation during light absorption, resulting in significant thermal losses. Most of ferroelectric films produce photocurrent and thermocurrent with opposite polarity, thus weakening the coupled photo-thermoelectric output of the devices. Here we report on a LaNiO3/BiMn2O5(BMO)/ITO ferroelectric film to produce photocurrent and thermocurrent with the same polarity. The polarity of the photocurrent generated by the BMO film is shown to be determined solely by the direction of spontaneous polarization, overcoming the detrimental effect of Schottky barrier for energy harvesting in device. We propose a new strategy to enhance the coupling factor, thereby offering valuable new insights for optimizing the utilization of ferroelectric materials in both light and heat energy applications.
{"title":"Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film","authors":"Aohan Xu ,&nbsp;Chong Guo ,&nbsp;Weiqi Qian ,&nbsp;Chris R. Bowen ,&nbsp;Ya Yang","doi":"10.1016/j.apmate.2024.100260","DOIUrl":"10.1016/j.apmate.2024.100260","url":null,"abstract":"<div><div>Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms of clean energy from natural environmental sources. However, the photoelectric performance of these materials is frequently constrained by heat generation during light absorption, resulting in significant thermal losses. Most of ferroelectric films produce photocurrent and thermocurrent with opposite polarity, thus weakening the coupled photo-thermoelectric output of the devices. Here we report on a LaNiO<sub>3</sub>/BiMn<sub>2</sub>O<sub>5</sub>(BMO)/ITO ferroelectric film to produce photocurrent and thermocurrent with the same polarity. The polarity of the photocurrent generated by the BMO film is shown to be determined solely by the direction of spontaneous polarization, overcoming the detrimental effect of Schottky barrier for energy harvesting in device. We propose a new strategy to enhance the coupling factor, thereby offering valuable new insights for optimizing the utilization of ferroelectric materials in both light and heat energy applications.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100260"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MA-activated lattice shrinkage and bandgap renormalization advancing the stability of FA1-xMAxPbI3 (x=0–1) perovskites photovoltaic
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100264
Congtan Zhu , Xueyi Guo , Si Xiao , Weihuang Lin , Zhaozhe Chen , Lin Zhang , Hui Zhang , Xiangming Xiong , Ying Yang
Generally, referring to the stability of perovskite, the most studied perovskite material has been MA-free mixed-cation perovskite. The precise role of MA in the light-thermal-humid stability of perovskite solar cells still lacks of a systematically understanding. In this work, the evolution of crystallographic structures, intermediate phase, ultrafast dynamics, and thermal decomposition behavior of MA-mixed perovskite FA1-xMAxPbI3 (x=0–100%) are investigated. The influence of MA on the stability of devices under heat, light, and humidity exposure are revealed. In the investigated compositional space (x=0–100%), device efficiencies vary from 19.5% to 22.8%, and the light, thermal, and humidity exposure stability of the related devices are obviously improved for FA1-xMAxPbI3 (x=20%–30%). Incorporation 20%–30% of MA cations lowers nucleation barrier and causes a significant volume shrinkage, which enhances the interaction between FA and I, thus improving crystallization and stability of the FA1-xMAxPbI3. Thermal behavior analysis reveals that the decomposition temperature of FA0.8MA0.2PbI3 reaches 247 ​°C (FAPbI3, 233 ​°C) and trace amounts of MA cations enhance the thermal stability of the perovskite. Remarkably, we observe lattice shrinkage using spherical aberration corrected transmission electron microscope (AC-TEM). This work implies that stabilizing perovskites will be realized by incorporating trace amounts of MA, which improve the crystallization and carrier transport, leading to improved stability and performances.
{"title":"MA-activated lattice shrinkage and bandgap renormalization advancing the stability of FA1-xMAxPbI3 (x=0–1) perovskites photovoltaic","authors":"Congtan Zhu ,&nbsp;Xueyi Guo ,&nbsp;Si Xiao ,&nbsp;Weihuang Lin ,&nbsp;Zhaozhe Chen ,&nbsp;Lin Zhang ,&nbsp;Hui Zhang ,&nbsp;Xiangming Xiong ,&nbsp;Ying Yang","doi":"10.1016/j.apmate.2024.100264","DOIUrl":"10.1016/j.apmate.2024.100264","url":null,"abstract":"<div><div>Generally, referring to the stability of perovskite, the most studied perovskite material has been MA-free mixed-cation perovskite. The precise role of MA in the light-thermal-humid stability of perovskite solar cells still lacks of a systematically understanding. In this work, the evolution of crystallographic structures, intermediate phase, ultrafast dynamics, and thermal decomposition behavior of MA-mixed perovskite FA<sub>1-<em>x</em></sub>MA<sub><em>x</em></sub>PbI<sub>3</sub> (<em>x</em>=0–100%) are investigated. The influence of MA on the stability of devices under heat, light, and humidity exposure are revealed. In the investigated compositional space (<em>x</em>=0–100%), device efficiencies vary from 19.5% to 22.8%, and the light, thermal, and humidity exposure stability of the related devices are obviously improved for FA<sub>1-<em>x</em></sub>MA<sub><em>x</em></sub>PbI<sub>3</sub> (<em>x</em>=20%–30%). Incorporation 20%–30% of MA cations lowers nucleation barrier and causes a significant volume shrinkage, which enhances the interaction between FA and I, thus improving crystallization and stability of the FA<sub>1-<em>x</em></sub>MA<sub><em>x</em></sub>PbI<sub>3</sub>. Thermal behavior analysis reveals that the decomposition temperature of FA<sub>0.8</sub>MA<sub>0.2</sub>PbI<sub>3</sub> reaches 247 ​°C (FAPbI<sub>3</sub>, 233 ​°C) and trace amounts of MA cations enhance the thermal stability of the perovskite. Remarkably, we observe lattice shrinkage using spherical aberration corrected transmission electron microscope (AC-TEM). This work implies that stabilizing perovskites will be realized by incorporating trace amounts of MA, which improve the crystallization and carrier transport, leading to improved stability and performances.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100264"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frustrated lewis pairs regulated solid polymer electrolyte enables ultralong cycles of lithium metal batteries
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100263
Pingping Chang , Zhenjie Liu , Murong Xi , Yong Guo , Tianlong Wu , Juan Ding , Hongtao Liu , Yudai Huang
Long-cycling dendrite-free solid-state lithium metal batteries (LMBs) require fast and uniform lithium-ion (Li+) transport of solid-state electrolytes (SSEs). However, the SSEs still face the problems of low ionic conductivity, low Li+ transference number, and unstable interface with lithium metal. In this work, a novel strategy of frustrated Lewis pairs (FLPs) modulating solid polymer electrolytes (SPEs) has been firstly proposed that enables durable Li reversible cycling. The tunable strength of Lewis acid and base dual-active sites of nickel borate FLPs can synergistically promote both the dissociation of lithium salts and the transfer of Li+. As a consequence, the FLPs modulated SPEs (SPE-NiBO-150) exhibit high ionic conductivity of 4.92×10−4 ​S ​cm−1, high Li+ transference number of 0.74, and superior interface compatibility with both lithium anode and LiFePO4 cathode at room-temperature. The Li//SPE-NiBO-150//Li symmetric cell demonstrates ultralong cycle stability (over 10,000 ​h (417 days) at both current density of 0.2 and 0.5 ​mA ​cm−2), and the assembled solid-state LiFePO4//SPE-NiBO-150//Li battery also shows excellent performance (86% capacity retention for 300 cycles at 0.5C). The present work supplies a new insight into designing high-performance SPEs for solid-state LMB applications.
{"title":"Frustrated lewis pairs regulated solid polymer electrolyte enables ultralong cycles of lithium metal batteries","authors":"Pingping Chang ,&nbsp;Zhenjie Liu ,&nbsp;Murong Xi ,&nbsp;Yong Guo ,&nbsp;Tianlong Wu ,&nbsp;Juan Ding ,&nbsp;Hongtao Liu ,&nbsp;Yudai Huang","doi":"10.1016/j.apmate.2024.100263","DOIUrl":"10.1016/j.apmate.2024.100263","url":null,"abstract":"<div><div>Long-cycling dendrite-free solid-state lithium metal batteries (LMBs) require fast and uniform lithium-ion (Li<sup>+</sup>) transport of solid-state electrolytes (SSEs). However, the SSEs still face the problems of low ionic conductivity, low Li<sup>+</sup> transference number, and unstable interface with lithium metal. In this work, a novel strategy of frustrated Lewis pairs (FLPs) modulating solid polymer electrolytes (SPEs) has been firstly proposed that enables durable Li reversible cycling. The tunable strength of Lewis acid and base dual-active sites of nickel borate FLPs can synergistically promote both the dissociation of lithium salts and the transfer of Li<sup>+</sup>. As a consequence, the FLPs modulated SPEs (SPE-NiBO-150) exhibit high ionic conductivity of 4.92×10<sup>−4</sup> ​S ​cm<sup>−1</sup>, high Li<sup>+</sup> transference number of 0.74, and superior interface compatibility with both lithium anode and LiFePO<sub>4</sub> cathode at room-temperature. The Li//SPE-NiBO-150//Li symmetric cell demonstrates ultralong cycle stability (over 10,000 ​h (417 days) at both current density of 0.2 and 0.5 ​mA ​cm<sup>−2</sup>), and the assembled solid-state LiFePO<sub>4</sub>//SPE-NiBO-150//Li battery also shows excellent performance (86% capacity retention for 300 cycles at 0.5C). The present work supplies a new insight into designing high-performance SPEs for solid-state LMB applications.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100263"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100262
Fang Peng , Dan Liang , En Yang , Bongjun Yeom , Yuan Zhao , Wei Ma
Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multichannel information encryption, owing to the exceptional luminescence brightness. It was still a formidable challenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (glum) and full-colour-tailorable CPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs) were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)3 NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NW films. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibits highly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPL signals with wide colour gamut produce ranging from 480 ​nm to 800 ​nm, and tailorable CPL wavelengths are manipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum glum of up to 10−1 is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarized structural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant breakthrough lies in the development of advanced chiral perovskite materials with remarkable glum and tailorable CPL properties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.
{"title":"Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence","authors":"Fang Peng ,&nbsp;Dan Liang ,&nbsp;En Yang ,&nbsp;Bongjun Yeom ,&nbsp;Yuan Zhao ,&nbsp;Wei Ma","doi":"10.1016/j.apmate.2024.100262","DOIUrl":"10.1016/j.apmate.2024.100262","url":null,"abstract":"<div><div>Perovskites showcased potential promise for innovative circularly polarized luminescence (CPL)-active multichannel information encryption, owing to the exceptional luminescence brightness. It was still a formidable challenge to fabricate CPL-active perovskites with significant luminescent asymmetry factor (<em>g</em><sub>lum</sub>) and full-colour-tailorable CPL properties. Indeed, compared to isotropic perovskites, anisotropic perovskite nanowires (NWs) were conducive to carrier separation and transport for polarization enhancement. Herein, three types of CsPb(Br/I)<sub>3</sub> NWs with green, orange, red fluorescence (FL) were respectively synthesized and assembled into chiral NW films. The right-handed/left-handed chiral NW films constructed by 4+4 layers and 45° inter-angles exhibits highly symmetric and mirror-like chiral signals. The strongest chiral intensity is more than 3000 medg. CPL signals with wide colour gamut produce ranging from 480 ​nm to 800 ​nm, and tailorable CPL wavelengths are manipulated by the emission wavelength of perovskite NWs. A giant CPL signal with a maximum <em>g</em><sub>lum</sub> of up to 10<sup>−1</sup> is achieved. The polarization imaging of chiral NW films produces brilliant differential circularly polarized structural colours, making it more widely used in multilevel anti-counterfeiting systems. A significant breakthrough lies in the development of advanced chiral perovskite materials with remarkable <em>g</em><sub>lum</sub> and tailorable CPL properties, which sheds new light on optical anti-counterfeiting and intelligent information encryption.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100262"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO
Pub Date : 2025-02-01 DOI: 10.1016/j.apmate.2024.100259
Xueyuan Pan , Caikang Wang , Bei Li , Mingzhe Ma , Hao Sun , Guowu Zhan , Kui Wang , Mengmeng Fan , Linfei Ding , Gengtao Fu , Kang Sun , Jianchun Jiang
CO2 conversion to CO via the reverse water-gas shift (RWGS) reaction is limited by a low CO2 conversion rate and CO selectivity. Herein, an efficient RWGS catalyst is constructed through Enteromorpha prolifera–derived N-rich mesoporous biochar (EPBC) supported atomic-level Cu-Mo2C clusters (Cu-Mo2C/EPBC). Unlike traditional activated carbon (AC) supported Cu-Mo2C particles (Cu-Mo2C/AC), the Cu-Mo2C/EPBC not only presents the better graphitization degree and larger specific surface area, but also uniformly and firmly anchors atomic-level Cu-Mo2C clusters due to the existence of pyridine nitrogen. Furthermore, the pyridine N of Cu-Mo2C/EPBC strengthens an unblocked electron transfer between Mo2C and Cu clusters, as verified by X-ray absorption spectroscopy. As a result, the synergistic effect between pyridinic N anchoring and the clusters interaction in Cu-Mo2C/EPBC facilitates an improved CO selectivity of 99.95% at 500 ​°C compared with traditional Cu-Mo2C/AC (99.60%), as well as about 3-fold CO2 conversion rate. Density functional theory calculations confirm that pyridine N-modified carbon activates the local electronic redistribution at Cu-Mo2C clusters, which contributes to the decreased energy barrier of the transition state of CO∗+O∗+2H∗, thereby triggering the transformation of rate-limited step during the redox pathway. This biomass-derived strategy opens perspective on producing sustainable fuels and building blocks through the RWGS reaction.
{"title":"Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO","authors":"Xueyuan Pan ,&nbsp;Caikang Wang ,&nbsp;Bei Li ,&nbsp;Mingzhe Ma ,&nbsp;Hao Sun ,&nbsp;Guowu Zhan ,&nbsp;Kui Wang ,&nbsp;Mengmeng Fan ,&nbsp;Linfei Ding ,&nbsp;Gengtao Fu ,&nbsp;Kang Sun ,&nbsp;Jianchun Jiang","doi":"10.1016/j.apmate.2024.100259","DOIUrl":"10.1016/j.apmate.2024.100259","url":null,"abstract":"<div><div>CO<sub>2</sub> conversion to CO <em>via</em> the reverse water-gas shift (RWGS) reaction is limited by a low CO<sub>2</sub> conversion rate and CO selectivity. Herein, an efficient RWGS catalyst is constructed through <em>Enteromorpha prolifera</em>–derived N-rich mesoporous biochar (EPBC) supported atomic-level Cu-Mo<sub>2</sub>C clusters (Cu-Mo<sub>2</sub>C/EPBC). Unlike traditional activated carbon (AC) supported Cu-Mo<sub>2</sub>C particles (Cu-Mo<sub>2</sub>C/AC), the Cu-Mo<sub>2</sub>C/EPBC not only presents the better graphitization degree and larger specific surface area, but also uniformly and firmly anchors atomic-level Cu-Mo<sub>2</sub>C clusters due to the existence of pyridine nitrogen. Furthermore, the pyridine N of Cu-Mo<sub>2</sub>C/EPBC strengthens an unblocked electron transfer between Mo<sub>2</sub>C and Cu clusters, as verified by X-ray absorption spectroscopy. As a result, the synergistic effect between pyridinic N anchoring and the clusters interaction in Cu-Mo<sub>2</sub>C/EPBC facilitates an improved CO selectivity of 99.95% at 500 ​°C compared with traditional Cu-Mo<sub>2</sub>C/AC (99.60%), as well as about 3-fold CO<sub>2</sub> conversion rate. Density functional theory calculations confirm that pyridine N-modified carbon activates the local electronic redistribution at Cu-Mo<sub>2</sub>C clusters, which contributes to the decreased energy barrier of the transition state of CO∗+O∗+2H∗, thereby triggering the transformation of rate-limited step during the redox pathway. This biomass-derived strategy opens perspective on producing sustainable fuels and building blocks through the RWGS reaction.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100259"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomically dispersed Fe boosting elimination performance of g-C3N4 towards refractory sulfonic azo compounds via catalyst-contaminant interaction 通过催化剂与污染物的相互作用,原子分散的铁元素提高了 g-C3N4 对难熔磺酰基偶氮化合物的消除性能
Pub Date : 2024-11-01 DOI: 10.1016/j.apmate.2024.100251
Puying Liang , Zhouping Wang , Shiyu Liao , Yang Lou , Jiawei Zhang , Chengsi Pan , Yongfa Zhu , Jing Xu
Herein, an oxygen-doped porous g-C3N4 photocatalyst modified with atomically dispersed Fe (Fe1/OPCN) is successfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants from water via catalyst-contaminant interaction. The elimination performance of Fe1/OPCN towards acid red 9, acid red 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increases gradually. The amaranth degradation rate of Fe1/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton and OPCN, respectively. In addition, Fe1/OPCN also has more outstanding removal activities towards other contaminants with sulfonic acid and azo groups alone. The considerable enhancement for removing sulfonic azo contaminants of Fe1/OPCN is mainly ascribed to the following aspects: (1) The modified Fe could enhance the adsorption towards sulfonic azo compounds to accelerate the mass transfer, act as e acceptor to promote interfacial charge separation, and trigger the self-Fenton reaction to convert in-situ generated H2O2 into •OH. (2) Fe(Ⅲ) could coordinate with N=N to form d-π conjugation, which could attract e transfer to attack N=N bond. Meanwhile, the inhibited charge recombination could release more free h+ to oxidize sulfonic acid groups into SO4•. (3) Under the cooperation of abundant multiple active species (O2, h+, e, OH, SO4•) formed during the degradation reaction, sulfonic azo compounds could be completely mineralized into harmless small molecules (CO2, H2O, etc.) by means of N=N cleavage, hydroxyl substitution, and aromatic ring opening. This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds from wastewater.
本文成功制备了一种用原子分散的 Fe(Fe1/OPCN)修饰的掺氧多孔 g-C3N4 光催化剂,并通过催化剂与污染物的相互作用,在去除水中难去除的磺酸偶氮污染物方面表现出显著的优势。Fe1/OPCN 对酸性红 9、酸性红 13 和含有类似偶氮萘结构且磺酸基团不断增加的苋菜的消除性能逐渐提高。Fe1/OPCN 对苋菜的降解率分别是均相 Fenton 和 OPCN 的 17.7 倍和 6.1 倍。此外,Fe1/OPCN 对其他单独带有磺酸和偶氮基团的污染物的去除活性也更为突出。Fe1/OPCN 对磺酸偶氮污染物的去除率显著提高主要归因于以下几个方面:(1)修饰的 Fe 可增强对磺酸偶氮化合物的吸附以加速传质,作为电子受体促进界面电荷分离,并引发自 Fenton 反应将原位生成的 H2O2 转化为 -OH。(2) Fe(Ⅲ)能与 -N=N- 配位形成 d-π 共轭,从而吸引 e- 转移攻击 -N=N- 键。同时,受抑制的电荷重组可以释放出更多的游离 h+,将磺酸基团氧化成 SO4--。(3) 在降解反应中形成的丰富的多种活性物种(-O2-、h+、e-、-OH、SO4--)的协同作用下,磺酰基偶氮化合物可通过-N=N-裂解、羟基取代和芳香环打开等方式完全矿化为无害的小分子(CO2、H2O 等)。这项研究为有效消除废水中的难溶性磺酰基偶氮化合物提供了一种新方法。
{"title":"Atomically dispersed Fe boosting elimination performance of g-C3N4 towards refractory sulfonic azo compounds via catalyst-contaminant interaction","authors":"Puying Liang ,&nbsp;Zhouping Wang ,&nbsp;Shiyu Liao ,&nbsp;Yang Lou ,&nbsp;Jiawei Zhang ,&nbsp;Chengsi Pan ,&nbsp;Yongfa Zhu ,&nbsp;Jing Xu","doi":"10.1016/j.apmate.2024.100251","DOIUrl":"10.1016/j.apmate.2024.100251","url":null,"abstract":"<div><div>Herein, an oxygen-doped porous g-C<sub>3</sub>N<sub>4</sub> photocatalyst modified with atomically dispersed Fe (Fe<sub>1</sub>/OPCN) is successfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants from water via catalyst-contaminant interaction. The elimination performance of Fe<sub>1</sub>/OPCN towards acid red 9, acid red 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increases gradually. The amaranth degradation rate of Fe<sub>1</sub>/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton and OPCN, respectively. In addition, Fe<sub>1</sub>/OPCN also has more outstanding removal activities towards other contaminants with sulfonic acid and azo groups alone. The considerable enhancement for removing sulfonic azo contaminants of Fe<sub>1</sub>/OPCN is mainly ascribed to the following aspects: (1) The modified Fe could enhance the adsorption towards sulfonic azo compounds to accelerate the mass transfer, act as e<sup>−</sup> acceptor to promote interfacial charge separation, and trigger the self-Fenton reaction to convert in-situ generated H<sub>2</sub>O<sub>2</sub> into •OH. (2) Fe(Ⅲ) could coordinate with <strong>—</strong>N=N<strong>—</strong> to form d-π conjugation, which could attract e<sup>−</sup> transfer to attack <strong>—</strong>N=N<strong>—</strong> bond. Meanwhile, the inhibited charge recombination could release more free h<sup>+</sup> to oxidize sulfonic acid groups into SO<sub>4</sub><sup>−</sup>•. (3) Under the cooperation of abundant multiple active species (<em>•</em>O<sub>2</sub><sup>−</sup>, h<sup>+</sup>, e<sup>−</sup>, <em>•</em>OH, SO<sub>4</sub><sup>−</sup>•) formed during the degradation reaction, sulfonic azo compounds could be completely mineralized into harmless small molecules (CO<sub>2</sub>, H<sub>2</sub>O, etc.) by means of <strong>—</strong>N=N<strong>—</strong> cleavage, hydroxyl substitution, and aromatic ring opening. This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds from wastewater.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100251"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable synthesis and heterogeneous tailoring of 1D perovskites, emerging properties and applications 一维过氧化物的可控合成和异质定制、新兴特性和应用
Pub Date : 2024-10-24 DOI: 10.1016/j.apmate.2024.100250
En Yang , Mengna Zhang , Shuaishuai Wei , Dan Liang , Mustafa Zeb , Liping Zhang , Yoonseob Kim , Yuan Zhao , Wei Ma
One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskite types, making them a focal point in photoelectric research. In recent years, there has been a significant surge in interest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by advancements in synthesis techniques and notable breakthroughs in novel methodologies and application properties. This article provides a comprehensive review of the progress made in research on one-dimensional anisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhancement in various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect in tailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesis methods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, categorizing them into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, and the ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricating heterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence the interfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performance applications, exploring how heterogeneous effects can enhance performance and drive the development of heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting diodes, and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunities offered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their production and application landscapes.
一维包光体具有区别于其他类型包光体的独特光电特性,使其成为光电研究的焦点。近年来,由于合成技术的进步以及新方法和应用特性方面的显著突破,人们对一维各向异性包光体的合成和应用兴趣大增。本文全面回顾了一维各向异性包晶石的研究进展,详细介绍了合成机制以及在各种应用中提高性能的潜在途径。我们强调了可控合成和异质效应在定制包光体特性以提高应用效率方面的关键作用。首先,本综述探讨了创建异质诱导一维各向异性包晶的主要合成方法和机制,并将其分为两种主要方法:一种是利用选择性配体的经典湿化学合成法,另一种是无配体的基底辅助法。可控合成的精确性对于制造异质结构至关重要,因为合成的前驱体、形状和表面配体会对异质界面的界面强度产生重大影响。我们还讨论了为实现高性能应用而必须改进的关键特性,探讨了异质效应如何提高性能并推动异质器件在光探测器、太阳能电池、发光二极管和光催化等各种应用中的发展。最后,通过强调战略性异质结构所带来的新兴潜力和大有可为的机遇,我们预测了其生产和应用前景充满活力和变革性的未来。
{"title":"Controllable synthesis and heterogeneous tailoring of 1D perovskites, emerging properties and applications","authors":"En Yang ,&nbsp;Mengna Zhang ,&nbsp;Shuaishuai Wei ,&nbsp;Dan Liang ,&nbsp;Mustafa Zeb ,&nbsp;Liping Zhang ,&nbsp;Yoonseob Kim ,&nbsp;Yuan Zhao ,&nbsp;Wei Ma","doi":"10.1016/j.apmate.2024.100250","DOIUrl":"10.1016/j.apmate.2024.100250","url":null,"abstract":"<div><div>One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskite types, making them a focal point in photoelectric research. In recent years, there has been a significant surge in interest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by advancements in synthesis techniques and notable breakthroughs in novel methodologies and application properties. This article provides a comprehensive review of the progress made in research on one-dimensional anisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhancement in various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect in tailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesis methods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, categorizing them into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, and the ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricating heterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence the interfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performance applications, exploring how heterogeneous effects can enhance performance and drive the development of heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting diodes, and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunities offered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their production and application landscapes.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100250"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium 通过过量锂诱导的晶界相促进镍钴锰酸锂中掺杂钨的均匀性
Pub Date : 2024-10-12 DOI: 10.1016/j.apmate.2024.100248
Junjie Wang , Yucen Yan , Zilan Zhao , Jiayi Li , Gui Luo , Duo Deng , Wenjie Peng , Mingxia Dong , Zhixing Wang , Guochun Yan , Huajun Guo , Hui Duan , Lingjun Li , Shihao Feng , Xing Ou , Junchao Zheng , Jiexi Wang
LiNiO2 (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 ​wt% W-doped sample provides a significant improved capacity retention of 88.5 ​% compared with the pristine LNO (80.7 ​%) after 100 cycles at 2.8–4.3 ​V under 1C.
LiNiO2 (LNO)是最有前途的锂离子电池正极材料之一。钨元素在提高 LNO 稳定性方面的作用已被广泛研究。然而,人们对钨的具体掺杂过程和现有形态的认识还不够完善。本研究提出了一种锂诱导的晶界相 W 掺杂机制。结果表明,引入的 W 原子首先与锂源发生反应,在原生粒子的晶界处生成 Li-W-O 相。随着锂比例的增加,W 原子逐渐从晶界相扩散到内部层状结构,从而实现 W 掺杂。第一性原理计算验证了晶界相掺杂的可行性。此外,研究还发现 Li2WO4 晶界相是一种优良的锂离子导体,可以保护正极表面并提高速率性能。掺杂的 W 可以缓解有害的 H2↔H3 相变,从而抑制微裂缝的产生,改善电化学性能。因此,与原始 LNO(80.7%)相比,掺杂了 0.3 wt% W 的样品在 1C 下于 2.8-4.3 V 条件下循环 100 次后,容量保持率显著提高了 88.5%。
{"title":"Promoting homogeneous tungsten doping in LiNiO2 through a grain boundary phase induced by excessive lithium","authors":"Junjie Wang ,&nbsp;Yucen Yan ,&nbsp;Zilan Zhao ,&nbsp;Jiayi Li ,&nbsp;Gui Luo ,&nbsp;Duo Deng ,&nbsp;Wenjie Peng ,&nbsp;Mingxia Dong ,&nbsp;Zhixing Wang ,&nbsp;Guochun Yan ,&nbsp;Huajun Guo ,&nbsp;Hui Duan ,&nbsp;Lingjun Li ,&nbsp;Shihao Feng ,&nbsp;Xing Ou ,&nbsp;Junchao Zheng ,&nbsp;Jiexi Wang","doi":"10.1016/j.apmate.2024.100248","DOIUrl":"10.1016/j.apmate.2024.100248","url":null,"abstract":"<div><div>LiNiO<sub>2</sub> (LNO) is one of the most promising cathode materials for lithium-ion batteries. Tungsten element in enhancing the stability of LNO has been researched extensively. However, the understanding of the specific doping process and existing form of W are still not perfect. This study proposes a lithium-induced grain boundary phase W doping mechanism. The results demonstrate that the introduced W atoms first react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles. With the increase of lithium ratio, W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping. The feasibility of grain boundary phase doping is verified by first principles calculation. Furthermore, it is found that the Li<sub>2</sub>WO<sub>4</sub> grain boundary phase is an excellent lithium ion conductor, which can protect the cathode surface and improve the rate performance. The doped W can alleviate the harmful H2↔H3 phase transition, thereby inhibiting the generation of microcracks, and improving the electrochemical performance. Consequently, the 0.3 ​wt% W-doped sample provides a significant improved capacity retention of 88.5 ​% compared with the pristine LNO (80.7 ​%) after 100 cycles at 2.8–4.3 ​V under 1C.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100248"},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor 用于超低温质子伪电容器的高负载量三维打印氧化还原活性聚合物电极
Pub Date : 2024-10-10 DOI: 10.1016/j.apmate.2024.100247
Miaoran Zhang, Tengyu Yao, Tiezhu Xu, Xinji Zhou, Duo Chen, Laifa Shen
The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H+, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 ​F ​cm−2 at 30.78 ​mg ​cm−2) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 ​mWh cm−2 ​at −60 ​°C, as well as operates well even at −80 ​°C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.
超级电容器在极低温度下的稳定运行对于在恶劣环境中的应用至关重要。遗憾的是,传统的无机电极扩散动力学缓慢,质子伪电容器的循环稳定性差。在此,我们开发并合成了一种具有氧化还原活性的聚合物聚(1,5-二氨基萘),作为一种超快、高负载、耐用的伪电容阳极。聚(1,5-二氨基萘)的电荷存储取决于 C=N 基团与 H+ 的可逆配位反应,这使得与表面控制反应相关的快速动力学成为可能。三维打印的有机电极具有显著的面积电容(30.78 毫克/厘米-2 时为 8.43 F 厘米-2)和与厚度无关的速率性能。此外,三维打印质子伪电容器还具有很强的低温耐受性,在-60 °C时可提供0.44 mWh cm-2的高能量密度,即使在-80 °C时也能良好工作。这项工作表明,将有机材料设计与三维分层网络电极结构相结合,可为耐低温超级电容器提供一种前景广阔的解决方案。
{"title":"3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor","authors":"Miaoran Zhang,&nbsp;Tengyu Yao,&nbsp;Tiezhu Xu,&nbsp;Xinji Zhou,&nbsp;Duo Chen,&nbsp;Laifa Shen","doi":"10.1016/j.apmate.2024.100247","DOIUrl":"10.1016/j.apmate.2024.100247","url":null,"abstract":"<div><div>The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H<sup>+</sup>, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 ​F ​cm<sup>−2</sup> at 30.78 ​mg ​cm<sup>−2</sup>) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 ​mWh cm<sup>−2</sup> ​at −60 ​°C, as well as operates well even at −80 ​°C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100247"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Powder Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1